login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076795
Partial sums of (2n-1)!!.
5
0, 1, 2, 5, 20, 125, 1070, 11465, 146600, 2173625, 36633050, 691362125, 14440672700, 330674815925, 8236528396550, 221694575073425, 6411977928702800, 198310761891213425, 6530970632654064050
OFFSET
0,3
LINKS
Eric Weisstein's MathWorld, Double Factorial.
Eric Weisstein's MathWorld, Incomplete Gamma Function.
Eric Weisstein's MathWorld, Erfi.
Eric Weisstein's MathWorld, Dawson's Integral.
FORMULA
E.g.f.: exp(x) * Integral_{t=0, x} exp(-t) / sqrt(1-2*t) dt.
a(n) = a(n-1) * (2*n - 2) - a(n-2) * (2*n - 3).
a(n) ~ 1/(sqrt(2) * n) * 2^n * (n/e)^n.
G.f.: A(x)=x/(1-x)*(1 + x/(U(0)-x)), where U(k)= (2*k+1)*x + 1 - (2*k+3)*x/U(k+1); (continued fraction Euler's 1st kind, 1-step ). - Sergei N. Gladkovskii, Jun 27 2012
G.f.: x/(1-x)/Q(0), where Q(k)= 1 - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
G.f.: G(0)*x/(1-x), where G(k)= 1 - x*(k+1)/(x*(k+1) - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 04 2013
From Vladimir Reshetnikov, Oct 27 2015: (Start)
a(n) = Sum_{k=0..n-1} (2*k-1)!!.
a(n) = sqrt(Pi/2)*exp(-1/2)*erfi(1/sqrt(2))+(2*n-1)!!*Im(Gamma(1/2-n, -1/2))*exp(-1/2)/((-2)^n*sqrt(2)), where Gamma(a, x) is the upper incomplete Gamma function.
E.g.f.: sqrt(2)*(exp(x)*F(1/sqrt(2))-F(sqrt(1/2-x))), where F(x)=exp(-x^2)*erfi(x)*sqrt(Pi)/2 is the Dawson integral. (End)
0 = a(n)*(+2*a(n+1) - 3*a(n+2) + a(n+3)) + a(n+1)*(-a(n+1) + a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) for all n>=0. - Michael Somos, Oct 29 2015
EXAMPLE
G.f. = x + 2*x^2 + 5*x^3 + 20*x^4 + 125*x^5 + 1070*x^6 + 11465*x^7 + 146600*x^8 + ...
MATHEMATICA
Join[{0}, Accumulate[Table[(2n-1)!!, {n, 0, 20}]]] (* Harvey P. Dale, Jan 27 2013 *)
Round@Table[Sqrt[Pi/(2E)] Erfi[1/Sqrt[2]] + (2n-1)!! Im[Gamma[1/2-n, -1/2]]/((-2)^n Sqrt[2E]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 27 2015 *)
a[ n_] := Sum[ (2 k - 1)!!, {k, 0, n - 1}]; (* Michael Somos, Oct 29 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, sum(k=0, n-1, (2*k)! / (k! * 2^k)))};
CROSSREFS
Sequence in context: A144503 A012321 A012519 * A130293 A156073 A006366
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 16 2002
STATUS
approved