login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A130293
Number of necklaces of n beads with up to n colors, with cyclic permutation {1,..,n} of the colors taken to be equivalent.
15
1, 2, 5, 20, 129, 1316, 16813, 262284, 4783029, 100002024, 2357947701, 61917406672, 1792160394049, 56693913450992, 1946195068379933, 72057594071484456, 2862423051509815809, 121439531097819321972, 5480386857784802185957, 262144000000051200072048, 13248496640331026150086281
OFFSET
1,2
COMMENTS
From Olivier Gérard, Aug 01 2016: (Start)
Equivalent to the definition: number of classes of endofunctions of [n] under rotation and translation mod n.
Classes can be of size between n and n^2 depending on divisibility properties of n.
n n 2n 3n ... n^2
--------------------------
1 1
2 2
3 3 2
4 4 2 14
5 5 0 124
6 6 6 22 1282
7 7 0 16806
For prime n, the only possible class sizes are n and n^2, the classes of size n are the n arithmetical progression modulo n so #(c-n)=n, #(c-n^2)=(n^n - n*n)/n^2 = n^(n-2)-1 and a(n) = n^(n-2)+n-1.
(End)
LINKS
Darij Grinberg and Peter Mao, Necklaces over a group with identity product, arXiv:2405.08937 [math.CO], 2024. See p. 22.
FORMULA
a(n) = (1/n^2)*Sum_{d|n} d*phi(d)*n^(n/d). - Vladeta Jovovic, Aug 14 2007, Aug 24 2007
EXAMPLE
The 5 necklaces for n=3 are: 000, 001, 002, 012 and 021.
MATHEMATICA
tor8={}; ru8=Thread[ i_ ->Table[ Mod[i+k, 8], {k, 8}]]; Do[idi=IntegerDigits[k, 8, 8]; try= Function[w, First[temp=Union[Join @@(Table[RotateRight[w, k], {k, 8}]/.#&)/@ ru8]]][idi]; If[idi===try, tor8=Flatten[ {tor8, {{Length[temp], idi}}}, 1] ], {k, 0, 8^8-1}];
a[n_]:=Sum[d EulerPhi[d]n^(n/d), {d, Divisors[n]}]/n^2; Array[a, 21] (* Stefano Spezia, May 21 2024 *)
PROG
(PARI) a(n) = sumdiv(n, d, d*eulerphi(d)*n^(n/d))/n^2; \\ Michel Marcus, Aug 05 2016
CROSSREFS
Cf. A081720.
Cf. A000312: All endofunctions.
Cf. A000169: Classes under translation mod n.
Cf. A001700: Classes under sort.
Cf. A056665: Classes under rotation.
Cf. A168658: Classes under complement to n+1.
Cf. A130293: Classes under translation and rotation.
Cf. A081721: Classes under rotation and reversal.
Cf. A275549: Classes under reversal.
Cf. A275550: Classes under reversal and complement.
Cf. A275551: Classes under translation and reversal.
Cf. A275552: Classes under translation and complement.
Cf. A275553: Classes under translation, complement and reversal.
Cf. A275554: Classes under translation, rotation and complement.
Cf. A275555: Classes under translation, rotation and reversal.
Cf. A275556: Classes under translation, rotation, complement and reversal.
Cf. A275557: Classes under rotation and complement.
Cf. A275558: Classes under rotation, complement and reversal.
Sequence in context: A012321 A012519 A076795 * A156073 A006366 A012317
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Aug 06 2007, Aug 14 2007
STATUS
approved