login
A275550
Number of classes of endofunctions of [n] under reversal and complement to n+1.
14
1, 1, 2, 10, 72, 819, 11772, 206572, 4196352, 96871525, 2500050000, 71328400806, 2229026605056, 75718793541895, 2778001759096256, 109473473278652344, 4611686020574871552, 206810065502975099529
OFFSET
0,3
COMMENTS
Possible classes size are 1,2,4
n 1 2 4
-----------------
1 1 0 0
2 0 2 0
3 1 5 4
4 0 16 56
5 1 74 744
6 0 216 11556
7 1 1371 205200.
Classes of size 2 can be further decomposed by whether the function is stable by reversal or stable by (reversal and complement).
n 2 2-r 2-rc
-----------------
1 0 0 0
2 2 1 1
3 5 4 1
4 16 8 8
5 74 62 12
6 216 108 108
7 1371 1200 171.
LINKS
FORMULA
a(n) = (1+(-1)^(n+1)+2*n^n+(3+((-1)^(n+1))*(n-1)+n)*n^(floor(n/2)) )/8.
Classes of size 2: (2 (-1 + (-1)^n) + n^floor(n/2)*(3 + ((-1)^(1 + n))* (-1 + n) + n))/4.
MATHEMATICA
Table[1/8 (1+(-1)^(1+n)+2 n^n+n^Floor[n/2] (3+(-1)^(n+1) (-1+n)+n)), {n, 1, 17}]
PROG
(PARI) a(n) = (1+(-1)^(n+1)+2*n^n+(3+((-1)^(n+1))*(n-1)+n)*n^(floor(n/2)) )/8; \\ Andrew Howroyd, Sep 30 2017
CROSSREFS
Cf. A000312 All endofunctions
Cf. A000169 Classes under translation mod n
Cf. A001700 Classes under sort
Cf. A056665 Classes under rotation
Cf. A168658 Classes under complement to n+1
Cf. A130293 Classes under translation and rotation
Cf. A081721 Classes under rotation and reversal
Cf. A275549 Classes under reversal
Cf. A275550 Classes under reversal and complement
Cf. A275551 Classes under translation and reversal
Cf. A275552 Classes under translation and complement
Cf. A275553 Classes under translation, complement and reversal
Cf. A275554 Classes under translation, rotation and complement
Cf. A275555 Classes under translation, rotation and reversal
Cf. A275556 Classes under translation, rotation, complement and reversal
Cf. A275557 Classes under rotation and complement
Cf. A275558 Classes under rotation, complement and reversal
Cf. A192396 floor(((k+1)^n-(1+(-1)^k)/2)/2)
Cf. A275574 (2-r classes)
Sequence in context: A277502 A231039 A224799 * A243250 A088189 A228609
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Aug 01 2016
EXTENSIONS
Duplicate a(7) removed by Andrew Howroyd, Sep 30 2017
STATUS
approved