login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228609
Partial sums of the cubes of the tribonacci sequence A000073.
1
0, 1, 2, 10, 74, 417, 2614, 16438, 101622, 633063, 3941012, 24511836, 152535900, 949133883, 5905611508, 36746590964, 228646935796, 1422699232325, 8852413871022, 55082039340022, 342734883853750, 2132586518002125
OFFSET
0,3
REFERENCES
R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.
LINKS
H. Ohtsuka, Advanced Problems and Solutions, Fib. Quart. 51 (2) (2013) 186, H-736.
Index entries for linear recurrences with constant coefficients, signature (5,5,25,-58,26,-42,54,-13,1,-3,1).
FORMULA
a(n) = a(n-1) + (A000073(n))^3.
G.f.: x*(-1+3*x+11*x^3-5*x^4+x^5-3*x^6+x^7+5*x^2) / ( (x^3-5*x^2+7*x-1) *(x^6+4*x^5+11*x^4+12*x^3+11*x^2+4*x+1) *(x-1)^2 )
MATHEMATICA
CoefficientList[Series[x (-1 + 3 x + 11 x^3 - 5 x^4 + x^5 - 3 x^6 + x^7 + 5 x^2)/((x^3 - 5 x^2 + 7 x - 1) (x^6 + 4 x^5 + 11 x^4 + 12 x^3 + 11 x^2 + 4 x + 1) (x - 1)^2), {x, 0, 21}], x] (* Michael De Vlieger, Jan 12 2022 *)
Accumulate[LinearRecurrence[{1, 1, 1}, {0, 1, 1}, 30]^3] (* or *) LinearRecurrence[ {5, 5, 25, -58, 26, -42, 54, -13, 1, -3, 1}, {0, 1, 2, 10, 74, 417, 2614, 16438, 101622, 633063, 3941012}, 30] (* Harvey P. Dale, Sep 11 2022 *)
PROG
(PARI) T(n)=([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3]; \\ A000073
a(n) = sum(k=1, n, T(k)^3); \\ Michel Marcus, Jan 12 2022
CROSSREFS
Sequence in context: A275550 A243250 A088189 * A001395 A047853 A151387
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Dec 18 2013
STATUS
approved