login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107239
Sum of squares of tribonacci numbers (A000073).
15
0, 0, 1, 2, 6, 22, 71, 240, 816, 2752, 9313, 31514, 106590, 360606, 1219935, 4126960, 13961456, 47231280, 159782161, 540539330, 1828631430, 6186215574, 20927817799, 70798300288, 239508933824, 810252920400, 2741065994769, 9272959837818, 31370198430718
OFFSET
0,4
REFERENCES
R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.
LINKS
M. Feinberg, Fibonacci-Tribonacci, Fib. Quart. 1(3) (1963), 71-74.
Z. Jakubczyk, Advanced Problems and Solutions, Fib. Quart. 51 (3) (2013) 185, H-715.
Eric Weisstein's World of Mathematics, Tribonacci Number
FORMULA
a(n) = T(0)^2 + T(1)^2 + ... + T(n)^2 where T(n) = A000073(n).
From R. J. Mathar, Aug 19 2008: (Start)
a(n) = Sum_{i=0..n} A085697(i).
G.f.: x^2*(1-x-x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)*(1-x)). (End)
a(n) = 1/4 - (1/11)*Sum_{_R = RootOf(_Z^3-_Z^2-_Z-1)} ((3 + 7*_R + 5*_R^2)/(3*_R^2 - 2*_R - 1)*_R^(-n) - (1/44)*Sum_{_R = RootOf(_Z^3+_Z^2+3*_Z-1)} ((-1 - 2*_R - 9*_R^2)/(3*_R^2 + 2*_R + 3)*_R^(-n). - Robert Israel, Mar 26 2010
a(n+1) = A000073(n)*A000073(n+1) + ( (A000073(n+1) - A000073(n-1))^2 - 1 )/4 for n>0 [Jakubczyk]. - R. J. Mathar, Dec 19 2013
EXAMPLE
a(7) = 71 = 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2 + 7^2
MAPLE
b:= proc(n) option remember; `if`(n<3, [n*(n-1)/2$2],
(t-> [t, t^2+b(n-1)[2]])(add(b(n-j)[1], j=1..3)))
end:
a:= n-> b(n)[2]:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 22 2021
MATHEMATICA
Accumulate[LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 30]^2] (* Harvey P. Dale, Sep 11 2011 *)
LinearRecurrence[{3, 1, 3, -7, 1, -1, 1}, {0, 0, 1, 2, 6, 22, 71}, 30] (* Ray Chandler, Aug 02 2015 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0, 0] cat Coefficients(R!( x^2*(1-x-x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)*(1-x)) )); // G. C. Greubel, Nov 20 2021
(Sage)
@CachedFunction
def T(n): # A000073
if (n<2): return 0
elif (n==2): return 1
else: return T(n-1) +T(n-2) +T(n-3)
def A107231(n): return sum(T(j)^2 for j in (0..n))
[A107239(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 17 2005
STATUS
approved