login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of squares of tribonacci numbers (A000073).
15

%I #49 Sep 08 2022 08:45:18

%S 0,0,1,2,6,22,71,240,816,2752,9313,31514,106590,360606,1219935,

%T 4126960,13961456,47231280,159782161,540539330,1828631430,6186215574,

%U 20927817799,70798300288,239508933824,810252920400,2741065994769,9272959837818,31370198430718

%N Sum of squares of tribonacci numbers (A000073).

%D R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.

%H G. C. Greubel, <a href="/A107239/b107239.txt">Table of n, a(n) for n = 0..1000</a>

%H M. Feinberg, <a href="http://www.fq.math.ca/Scanned/1-3/feinberg.pdf">Fibonacci-Tribonacci</a>, Fib. Quart. 1(3) (1963), 71-74.

%H Z. Jakubczyk, <a href="http://www.fq.math.ca/Problems/August2013advanced.pdf">Advanced Problems and Solutions</a>, Fib. Quart. 51 (3) (2013) 185, H-715.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TribonacciNumber.html">Tribonacci Number</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3,1,3,-7,1,-1,1).

%F a(n) = T(0)^2 + T(1)^2 + ... + T(n)^2 where T(n) = A000073(n).

%F From _R. J. Mathar_, Aug 19 2008: (Start)

%F a(n) = Sum_{i=0..n} A085697(i).

%F G.f.: x^2*(1-x-x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)*(1-x)). (End)

%F a(n) = 1/4 - (1/11)*Sum_{_R = RootOf(_Z^3-_Z^2-_Z-1)} ((3 + 7*_R + 5*_R^2)/(3*_R^2 - 2*_R - 1)*_R^(-n) - (1/44)*Sum_{_R = RootOf(_Z^3+_Z^2+3*_Z-1)} ((-1 - 2*_R - 9*_R^2)/(3*_R^2 + 2*_R + 3)*_R^(-n). - _Robert Israel_, Mar 26 2010

%F a(n+1) = A000073(n)*A000073(n+1) + ( (A000073(n+1) - A000073(n-1))^2 - 1 )/4 for n>0 [Jakubczyk]. - _R. J. Mathar_, Dec 19 2013

%e a(7) = 71 = 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2 + 7^2

%p b:= proc(n) option remember; `if`(n<3, [n*(n-1)/2$2],

%p (t-> [t, t^2+b(n-1)[2]])(add(b(n-j)[1], j=1..3)))

%p end:

%p a:= n-> b(n)[2]:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Nov 22 2021

%t Accumulate[LinearRecurrence[{1,1,1},{0,0,1},30]^2] (* _Harvey P. Dale_, Sep 11 2011 *)

%t LinearRecurrence[{3,1,3,-7,1,-1,1}, {0,0,1,2,6,22,71}, 30] (* _Ray Chandler_, Aug 02 2015 *)

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(1-x-x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)*(1-x)) )); // _G. C. Greubel_, Nov 20 2021

%o (Sage)

%o @CachedFunction

%o def T(n): # A000073

%o if (n<2): return 0

%o elif (n==2): return 1

%o else: return T(n-1) +T(n-2) +T(n-3)

%o def A107231(n): return sum(T(j)^2 for j in (0..n))

%o [A107239(n) for n in (0..40)] # _G. C. Greubel_, Nov 20 2021

%Y Cf. A000073, A000213, A085697.

%Y Cf. A107240, A107241, A107242, A107243, A107244, A107245, A107246, A107247.

%K easy,nonn

%O 0,4

%A _Jonathan Vos Post_, May 17 2005