login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107242
Sum of squares of tetranacci numbers (A001630).
3
0, 0, 1, 5, 14, 50, 194, 723, 2659, 9884, 36780, 136636, 507517, 1885793, 7006962, 26034006, 96728470, 359395319, 1335332919, 4961420008, 18434129192, 68491926888, 254481427113, 945524491213, 3513091674982, 13052875206698
OFFSET
0,4
LINKS
W. C. Lynch, The t-Fibonacci numbers and polyphase sorting, Fib. Quart., 8 (1970), pp. 6ff.
Eric Weisstein's World of Mathematics, Tetranacci Number.
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
Index entries for linear recurrences with constant coefficients, signature (3, 2, 2, 6, -16, -2, 6, -2, 2, 1, -1).
FORMULA
a(n) = F_4(1)^2 + F_4(1)^2 + F_4(2)^2 + ... F_4(n)^2 where F_4(n) = A001630(n). a(0) = 0, a(n+1) = a(n) + A001630(n)^2.
a(n)= 3*a(n-1) +2*a(n-2) +2*a(n-3) +6*a(n-4) -16*a(n-5) -2*a(n-6) +6*a(n-7) -2*a(n-8) +2*a(n-9) +a(n-10) -a(n-11). G.f.: x^2*(1+x)*(x^6-x^5-4*x^2+x+1)/((x-1) *(x^4+x^3-3*x^2-3*x+1) *(x^6-x^5+2*x^4-\ 2*x^3-2*x^2-x-1)). [R. J. Mathar, Aug 11 2009]
EXAMPLE
a(0) = 0 = 0^2,
a(1) = 0 = 0^2 + 0^2
a(2) = 1 = 0^2 + 0^2 + 1^2
a(3) = 5 = 0^2 + 0^2 + 1^2 + 2^2
a(4) = 14 = 0^2 + 0^2 + 1^2 + 2^2 + 3^2
a(5) = 50 = 0^2 + 0^2 + 1^2 + 2^2 + 3^2 + 6^2
a(6) = 194 = 0^2 + 0^2 + 1^2 + 2^2 + 3^2 + 6^2 + 12^2
a(7) = 723 = 0^2 + 0^2 + 1^2 + 2^2 + 3^2 + 6^2 + 12^2 + 23^2
a(8) = 2659 = 0^2 + 0^2 + 1^2 + 2^2 + 3^2 + 6^2 + 12^2 + 23^2 + 44^2
MATHEMATICA
Accumulate[LinearRecurrence[{1, 1, 1, 1}, {0, 0, 1, 2}, 40]^2] (* or *) LinearRecurrence[{3, 2, 2, 6, -16, -2, 6, -2, 2, 1, -1}, {0, 0, 1, 5, 14, 50, 194, 723, 2659, 9884, 36780}, 40] (* Harvey P. Dale, Aug 25 2013 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 18 2005
EXTENSIONS
a(13) and a(23) corrected by R. J. Mathar, Aug 11 2009
STATUS
approved