login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107243
Sum of squares of pentanacci numbers (A001591).
4
0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, 290416, 1122160, 4337009, 16762634, 64787534, 250400910, 967783566, 3740437902, 14456621263, 55874162432, 215950971648, 834640190272, 3225844698176, 12467736540480
OFFSET
0,6
LINKS
W. C. Lynch, The t-Fibonacci numbers and polyphase sorting, Fib. Quart., 8 (1970), pp. 6ff.
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
Index entries for linear recurrences with constant coefficients, signature (3, 2, 3, 7, 14, -32, -2, 6, -4, -6, 10, 1, -1, 0, 1, -1).
FORMULA
a(n) = F_5(1)^2 + F_5(1)^2 + F_5(2)^2 + ... F_5(n)^2 where F_5(n) = A001591(n). a(0) = 0, a(n+1) = a(n) + A001591(n)^2.
a(n)= 3*a(n-1) +2*a(n-2) +3*a(n-3) +7*a(n-4) +14*a(n-5) -32*a(n-6) -2*a(n-7) +6*a(n-8) -4*a(n-9) -6*a(n-10) +10*a(n-11) +a(n-12) -a(n-13) +a(n-15) -a(n-16). [R. J. Mathar, Aug 11 2009]
G.f.: x^4*(x^10 +x^9 +x^7 +x^6 -6*x^5 -5*x^4 -3*x^3 -2*x^2 -x +1) / ((x -1)*(x^5 +x^4 +x^3 +3*x^2 +3*x -1)*(x^10 -x^9 -x^7 +x^6 -6*x^5 +3*x^4 +3*x^3 +2*x^2 +x +1)). - Colin Barker, May 08 2013
EXAMPLE
a(0) = 0 = 0^2 since F_5(0) = A001591(0) = 0.
a(1) = 0 = 0^2 + 0^2
a(2) = 0 = 0^2 + 0^2 + 0^2
a(3) = 0 = 0^2 + 0^2 + 0^2 + 0^2
a(4) = 1 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2
a(5) = 2 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2
a(6) = 6 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2
a(7) = 22 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2
a(8) = 86 = 8^2 + 22
a(9) = 342 = 16^2 + 86
MATHEMATICA
Accumulate[LinearRecurrence[{1, 1, 1, 1, 1}, {0, 0, 0, 0, 1}, 30]^2] (* Harvey P. Dale, Jan 04 2015 *)
LinearRecurrence[{3, 2, 3, 7, 14, -32, -2, 6, -4, -6, 10, 1, -1, 0, 1, -1}, {0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, 290416, 1122160}, 28] (* Ray Chandler, Aug 02 2015 *)
KEYWORD
easy,nonn,changed
AUTHOR
Jonathan Vos Post, May 19 2005
EXTENSIONS
a(26) and a(27) corrected by R. J. Mathar, Aug 11 2009
STATUS
approved