login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of squares of pentanacci numbers (A001591).
4

%I #21 Jan 05 2025 19:51:38

%S 0,0,0,0,1,2,6,22,86,342,1303,5024,19424,75120,290416,1122160,4337009,

%T 16762634,64787534,250400910,967783566,3740437902,14456621263,

%U 55874162432,215950971648,834640190272,3225844698176,12467736540480

%N Sum of squares of pentanacci numbers (A001591).

%H W. C. Lynch, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/8-1/lynch.pdf">The t-Fibonacci numbers and polyphase sorting</a>, Fib. Quart., 8 (1970), pp. 6ff.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step Number.</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (3, 2, 3, 7, 14, -32, -2, 6, -4, -6, 10, 1, -1, 0, 1, -1).

%F a(n) = F_5(1)^2 + F_5(1)^2 + F_5(2)^2 + ... F_5(n)^2 where F_5(n) = A001591(n). a(0) = 0, a(n+1) = a(n) + A001591(n)^2.

%F a(n)= 3*a(n-1) +2*a(n-2) +3*a(n-3) +7*a(n-4) +14*a(n-5) -32*a(n-6) -2*a(n-7) +6*a(n-8) -4*a(n-9) -6*a(n-10) +10*a(n-11) +a(n-12) -a(n-13) +a(n-15) -a(n-16). [_R. J. Mathar_, Aug 11 2009]

%F G.f.: x^4*(x^10 +x^9 +x^7 +x^6 -6*x^5 -5*x^4 -3*x^3 -2*x^2 -x +1) / ((x -1)*(x^5 +x^4 +x^3 +3*x^2 +3*x -1)*(x^10 -x^9 -x^7 +x^6 -6*x^5 +3*x^4 +3*x^3 +2*x^2 +x +1)). - _Colin Barker_, May 08 2013

%e a(0) = 0 = 0^2 since F_5(0) = A001591(0) = 0.

%e a(1) = 0 = 0^2 + 0^2

%e a(2) = 0 = 0^2 + 0^2 + 0^2

%e a(3) = 0 = 0^2 + 0^2 + 0^2 + 0^2

%e a(4) = 1 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2

%e a(5) = 2 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2

%e a(6) = 6 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2

%e a(7) = 22 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2

%e a(8) = 86 = 8^2 + 22

%e a(9) = 342 = 16^2 + 86

%t Accumulate[LinearRecurrence[{1,1,1,1,1},{0,0,0,0,1},30]^2] (* _Harvey P. Dale_, Jan 04 2015 *)

%t LinearRecurrence[{3, 2, 3, 7, 14, -32, -2, 6, -4, -6, 10, 1, -1, 0, 1, -1},{0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, 290416, 1122160},28] (* _Ray Chandler_, Aug 02 2015 *)

%Y Cf. A001591, A107239, A107242, A107244, A107245, A107246, A107247, A107248.

%K easy,nonn,changed

%O 0,6

%A _Jonathan Vos Post_, May 19 2005

%E a(26) and a(27) corrected by _R. J. Mathar_, Aug 11 2009