login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107231
a(n) = C(n+2,2)*C(n,floor(n/2)).
4
1, 3, 12, 30, 90, 210, 560, 1260, 3150, 6930, 16632, 36036, 84084, 180180, 411840, 875160, 1969110, 4157010, 9237800, 19399380, 42678636, 89237148, 194699232, 405623400, 878850700, 1825305300, 3931426800, 8143669800, 17450721000
OFFSET
0,2
COMMENTS
Third column of A107230. Related to the generalized pentagonal numbers A001318. The sequence 0,0,1,3,12,... is an inverse Chebyshev transform of 0,0,1,3,8,... (see A034828). This transform maps a g.f. g(x) to (1/sqrt(1-4x^2))g(c(x^2)). Thus A001318, as first differences of A034828, can be expressed in terms of A107231.
LINKS
FORMULA
G.f.: (1+x)*(1-sqrt(1-4*x^2))^3*(sqrt(1-4*x^2)-4*x^2+1)^2/(8*x^4*(1-4*x^2)^(5/2)*(sqrt(1-4*x^2)+2*x-1)^2).
a(n) = Sum_{k=0..floor((n+2)/2)} binomial(n+2, k)*A034828(n+2-2*k). [corrected by Jason Yuen, Sep 02 2024]
Conjecture: n*a(n) +(n-4)*a(n-1) +2*(-2*n-5)*a(n-2) -4*n*a(n-3)=0. - R. J. Mathar, Nov 24 2012
G.f.: (1+x)/((1+2*x)^(3/2)*(1-2*x)^(5/2)). - Vladimir Reshetnikov, Aug 01 2018
Sum_{n>=0} 1/a(n) = Pi^2/9 - 2*Pi/sqrt(3) + 4. - Amiram Eldar, Sep 03 2024
MATHEMATICA
Table[Binomial[n + 2, 2]*Binomial[n, Floor[n/2]], {n, 0, 50}] (* G. C. Greubel, Jun 13 2017 *)
PROG
(PARI) for(n=0, 50, print1(binomial(n+2, 2)*binomial(n, n\2), ", ")) \\ G. C. Greubel, Jun 13 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 13 2005
STATUS
approved