The OEIS is supported by the many generous donors to the OEIS Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107230 A number triangle of inverse Chebyshev transforms. 5
 1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 6, 12, 12, 4, 1, 10, 30, 30, 20, 5, 1, 20, 60, 90, 60, 30, 6, 1, 35, 140, 210, 210, 105, 42, 7, 1, 70, 280, 560, 560, 420, 168, 56, 8, 1, 126, 630, 1260, 1680, 1260, 756, 252, 72, 9, 1, 252, 1260, 3150, 4200, 4200, 2520, 1260, 360, 90, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS First column is A001405, second column is A100071, third column is A107231. Row sums are A005773(n+1), diagonal sums are A026003. The inverse Chebyshev transform concerned takes a g.f. g(x)->(1/sqrt(1-4x^2))g(xc(x^2)) where c(x) is the g.f. of A000108. It transforms a(n) to b(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*a(n-2k). Then a(n) = Sum_{k=0..floor(n/2)} (n/(n-k))*(-1)^k*binomial(n-k,k) *b(n-2k). Triangle read by rows: T(n,k) is the number of paths of length n with steps U=(1,1), D=(1,-1) and H=(1,0), starting at (0,0), staying weakly above the x-axis (i.e., left factors of Motzkin paths) and having k H steps. Example: T(3,1)=6 because we have HUD. HUU, UDH, UHD, UHU and UUH. Sum_{k=0..n} k*T(n,k) = A132894(n). - Emeric Deutsch, Oct 07 2007 LINKS Jinyuan Wang, Rows n=0..200 of triangle, flattened Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3. FORMULA T(n,k) = binomial(n,k)*binomial(n-k, floor((n-k)/2)). G.f.: G=G(t,z) satisfies z*(1-2*z-t*z)*G^2+(1-2*z-t*z)*G-1=0. - Emeric Deutsch, Oct 07 2007 E.g.f.: exp(x*y)*(BesselI(0,2*x)+BesselI(1,2*x)). - Vladeta Jovovic, Dec 02 2008 T(n, k) = (n/floor((n+k+1)/2))*(T(n-1, k) + T(n-1, k-1)), n >= k > 0. - Mikhail Kurkov, Feb 10 2019 EXAMPLE Triangle begins 1; 1, 1; 2, 2, 1; 3, 6, 3, 1; 6, 12, 12, 4, 1; 10, 30, 30, 20, 5, 1; MAPLE T:=proc(n, k) options operator, arrow: binomial(n, k)*binomial(n-k, floor((1/2)*n-(1/2)*k)) end proc: for n from 0 to 11 do seq(T(n, k), k=0..n) end do; # yields sequence in triangular form - Emeric Deutsch, Oct 07 2007 MATHEMATICA Table[Binomial[n, k]*Binomial[n-k, Floor[(n-k)/2]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 11 2019 *) PROG (PARI) T(n, k) = binomial(n, k)*binomial(n-k, (n-k)\2); \\ Michel Marcus, Feb 10 2019 (Magma) [[Binomial(n, k)*Binomial(n-k, Floor((n-k)/2)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 11 2019 (Sage) [[binomial(n, k)*binomial(n-k, floor((n-k)/2)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 11 2019 CROSSREFS Cf. A132894. Sequence in context: A094436 A286012 A094441 * A159830 A293472 A046726 Adjacent sequences: A107227 A107228 A107229 * A107231 A107232 A107233 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, May 13 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 23:26 EST 2023. Contains 367503 sequences. (Running on oeis4.)