login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159830
Exponential Riordan array [exp(exp(x)-1-2x),x]
1
1, -1, 1, 2, -2, 1, -3, 6, -3, 1, 7, -12, 12, -4, 1, -10, 35, -30, 20, -5, 1, 31, -60, 105, -60, 30, -6, 1, -21, 217, -210, 245, -105, 42, -7, 1, 204, -168, 868, -560, 490, -168, 56, -8, 1, 307, 1836, -756, 2604, -1260, 882, -252, 72, -9, 1, 2811, 3070, 9180, -2520, 6510, -2520, 1470, -360, 90, -10, 1
OFFSET
0,4
COMMENTS
First column is A126617. Row sums are A000296. A007318*A159830 is A124323.
The inverse is [exp(-exp(x)+1+2x),x] which has production matrix given by
1, 1,
-1, 1, 1,
-1, -2, 1, 1,
-1, -3, -3, 1, 1,
-1, -4, -6, -4, 1, 1 ...
FORMULA
G.f.: 1/(1-xy+x-x^2/(1-xy-2x^2/(1-xy-x-3x^2/(1-xy-2x-4x^2/(1-... (continued fraction).
EXAMPLE
Triangle begins
1,
-1, 1,
2, -2, 1,
-3, 6, -3, 1,
7, -12, 12, -4, 1,
-10, 35, -30, 20, -5, 1,
31, -60, 105, -60, 30, -6, 1,
-21, 217, -210, 245, -105, 42, -7, 1,
204, -168, 868, -560, 490, -168, 56, -8, 1
Production array is
-1, 1,
1, -1, 1,
1, 2, -1, 1,
1, 3, 3, -1, 1,
1, 4, 6, 4, -1, 1,
1, 5, 10, 10, 5, -1, 1,
1, 6, 15, 20, 15, 6, -1, 1,
1, 7, 21, 35, 35, 21, 7, -1, 1,
1, 8, 28, 56, 70, 56, 28, 8, -1, 1
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
RiordanArray[Exp[Exp[#] - 1 - 2 #]&, #&, 11, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
CROSSREFS
Sequence in context: A379048 A094441 A107230 * A293472 A046726 A082137
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Apr 23 2009
STATUS
approved