login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379048
Irregular triangular array: row n is the linear recurrence signature of F(i)^n - F(i-1)^n, where F = A000045 (Fibonacci numbers).
0
1, 1, 2, 2, -1, 3, 6, -3, -1, 4, 19, 4, -1, 8, 40, -60, -40, 8, 1, 13, 104, -260, -260, 104, 13, -1, 21, 273, -1092, -1820, 1092, 273, -21, -1, 33, 747, -3894, -16270, -3894, 747, 33, -1, 55, 1870, -19635, -85085, 136136, 85085, -19635, -1870, 55, 1, 89
OFFSET
1,3
COMMENTS
(column 1) = (1, 2, 3, 4, 8, 13, 21, 33, 55, 89, 144, 232, ...) is linearly recurrent with signature (1,1,0,1,-1,-1).
(column 2) = (1, 2, 6, 19, 40, 104, 273, 747, 1870, 4895, 12816, 33784, ...) is linearly recurrent with signature (3, -1, 0, 8, -24, 8, 0, -8, 24, -8, 0, 1, -3, 1).
Row n is also the linear recurrence signature of L(i)^n - L(i-1)(^n, where L = A000032 (Lucas numbers).
FORMULA
First 10 rows:
1 1
2 2 -1
3 6 -3 -1
4 19 4 -1
8 40 -60 -40 8 1
13 104 -260 -260 104 13 -1
21 273 -1092 -1820 1092 273 -21 -1
33 747 -3894 -16270 -3894 747 33 -1
55 1870 -19635 -85085 136136 85085 -19635 -1870 55 1
89 4895 -83215 -582505 1514513 1514513 -582505 -83215 4895 89 -1
MATHEMATICA
z = 25; w[i_] := Fibonacci[i];
t[p_] := Table[w[i]^p - w[i - 1]^p, {i, 1, z}];
Column[Table[FindLinearRecurrence[t[p]], {p, 1, 12}]] (* array *)
Flatten[Table[FindLinearRecurrence[t[p]], {p, 1, 12}]] (* sequence *)
CROSSREFS
KEYWORD
sign
AUTHOR
Clark Kimberling, Dec 16 2024
STATUS
approved