login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226205
a(n) = F(n)^2 - F(n-1)^2 or F(n+1) * F(n-2) where F(n) = A000045(n), the Fibonacci numbers.
12
1, 0, 3, 5, 16, 39, 105, 272, 715, 1869, 4896, 12815, 33553, 87840, 229971, 602069, 1576240, 4126647, 10803705, 28284464, 74049691, 193864605, 507544128, 1328767775, 3478759201, 9107509824, 23843770275, 62423800997, 163427632720, 427859097159, 1120149658761
OFFSET
1,3
COMMENTS
A001519(n)^2 = A079472(n)^2 + a(n)^2 and (A001519(n), A079472(n), a(n)) is a Pythagorean triple.
INVERT transform is A052156. PSUM transform is A007598. SUMADJ transform is A088305. BINOMIAL transform is A039717. BINOMIAL transform with 0 prepended is A112091 with 0 prepended. BINOMIAL transform inverse is A084179(n+1).
LINKS
John P. Bonomo and Montana Ferita, A Small Fib, College Math. J., 2023.
Nurettin Irmak, Product of arbitrary Fibonacci numbers with distance 1 to Fibonomial coefficient, Turk J Math, (2017) 41: 825-828. See p. 828.
FORMULA
G.f.: x * (1 - x)^2 / ((1 + x) * (1 -3*x + x^2)).
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = - A121646(n).
a(n) = -a(1-n) for all n in Z.
a(n) = A121801(n+1) / 2. - Michael Somos, Jun 17 2014
a(n) = a(n-1) + A000045(n-1)^2 - 2*(-1)^n, for n>1. - Alexander Samokrutov, Sep 07 2015
a(n) = F(n-1)*F(n) - (-1)^n. - Bruno Berselli, Oct 30 2015
a(n) = 2^(-1-n)*(-(-1)^n*2^(3+n)-(3-sqrt(5))^n*(1+sqrt(5))+(-1+sqrt(5))*(3+sqrt(5))^n)/5. - Colin Barker, Sep 28 2016
From Amiram Eldar, Oct 06 2020: (Start)
Sum_{n>=3} 1/a(n) = (1/2) * A290565 - 1/4.
Sum_{n>=3} (-1)^(n+1)/a(n) = (3/2) * (1/phi - 1/2), where phi is the golden ratio (A001622). (End)
EXAMPLE
G.f. = x + 3*x^3 + 5*x^4 + 16*x^5 + 39*x^6 + 105*x^7 + 272*x^8 + 715*x^9 + ...
MAPLE
a:= n-> (<<0|1|0>, <0|0|1>, <-1|2|2>>^n. <<1, 0, 3>>)[1, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 28 2016
MATHEMATICA
a[ n_] := Fibonacci[n + 1] Fibonacci[n - 2]; (* Michael Somos, Jun 17 2014 *)
CoefficientList[Series[(1 - x)^2/((1 + x) (1 - 3 x + x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 17 2014 *)
PROG
(Magma) [Fibonacci(n)^2-Fibonacci(n-1)^2: n in [1..40]]; // Vincenzo Librandi, Jun 18 2014
(PARI) {a(n) = fibonacci( n + 1) * fibonacci( n - 2)};
(PARI) a(n) = round(2^(-1-n)*(-(-1)^n*2^(3+n)-(3-sqrt(5))^n*(1+sqrt(5))+(-1+sqrt(5))*(3+sqrt(5))^n)/5) \\ Colin Barker, Sep 28 2016
(PARI) lista(nn) = {my(p = (3*x-1)/(x^3-2*x^2-2*x+1)); for (n=1, nn, p = deriv(p, x); print1(subst(p, x, 0)/n!, ", "); ); } \\ Michel Marcus, May 22 2018
CROSSREFS
Cf. similar sequences of the type k*F(n)*F(n+1)+(-1)^n listed in A264080.
Cf. A260259: numbers of the form F(n)*F(n+1)-(-1)^n. - Bruno Berselli, Nov 02 2015
Sequence in context: A106588 A123785 A121646 * A300533 A221783 A368409
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jun 06 2013
STATUS
approved