|
|
A368409
|
|
Number of non-isomorphic connected set-systems of weight n contradicting a strict version of the axiom of choice.
|
|
12
|
|
|
0, 0, 0, 0, 1, 0, 3, 5, 16, 41, 130
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
COMMENTS
|
A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
|
|
LINKS
|
|
|
EXAMPLE
|
Non-isomorphic representatives of the a(4) = 1 through a(8) = 16 set-systems:
{1}{2}{12} . {1}{2}{13}{23} {1}{3}{23}{123} {1}{5}{15}{2345}
{1}{2}{3}{123} {1}{4}{14}{234} {2}{13}{23}{123}
{2}{3}{13}{23} {2}{3}{23}{123} {3}{13}{23}{123}
{3}{12}{13}{23} {3}{4}{34}{1234}
{1}{2}{3}{13}{23} {1}{2}{13}{24}{34}
{1}{2}{3}{14}{234}
{1}{2}{3}{23}{123}
{1}{2}{3}{4}{1234}
{1}{3}{4}{14}{234}
{2}{3}{12}{13}{23}
{2}{3}{13}{24}{34}
{2}{3}{14}{24}{34}
{2}{3}{4}{14}{234}
{2}{4}{13}{24}{34}
{3}{4}{13}{24}{34}
{3}{4}{14}{24}{34}
|
|
MATHEMATICA
|
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]& /@ sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]], {s, Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n]}];
brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i, p[[i]]}, {i, Length[p]}])], {p, Permutations[Union@@m]}]]];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}], Length[Intersection@@s[[#]]]>0&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Union[brute/@Select[mpm[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]=={}&]]], {n, 0, 6}]
|
|
CROSSREFS
|
This is the connected case of A368094.
Allowing repeat edges only: connected case of A368421 (complement A368422).
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|