login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A368187
Divisor-minimal numbers whose prime indices of prime indices contradict a strict version of the axiom of choice.
11
2, 9, 21, 25, 49, 57, 115, 121, 133, 159, 195, 289, 361, 371, 393, 455, 507, 515, 529, 555, 845, 897, 915, 917, 933, 957, 961, 1007, 1067, 1183, 1235, 1295, 1335, 1443, 1681, 2093, 2095, 2135, 2157, 2177, 2193, 2197, 2233, 2265, 2343, 2369, 2379, 2405, 2489
OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
EXAMPLE
The terms together with their prime indices begin:
2: {1}
9: {2,2}
21: {2,4}
25: {3,3}
49: {4,4}
57: {2,8}
115: {3,9}
121: {5,5}
133: {4,8}
159: {2,16}
195: {2,3,6}
289: {7,7}
361: {8,8}
371: {4,16}
393: {2,32}
455: {3,4,6}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
vmin[y_]:=Select[y, Function[s, Select[DeleteCases[y, s], Divisible[s, #]&]=={}]];
Select[Range[100], Select[Tuples[prix /@ prix[#]], UnsameQ@@#&]=={}&]//vmin
CROSSREFS
The version for BII-numbers of set-systems is A368532.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
Sequence in context: A002888 A041963 A298912 * A005476 A316430 A131476
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 29 2023
STATUS
approved