OFFSET
1,8
COMMENTS
For example, the factorization f = 2*3*6 has two ways to choose a prime factor of each factor, namely (2,3,2) and (2,3,3), but neither of these has all different elements, so f is counted under a(36).
EXAMPLE
The a(1) = 0 through a(24) = 3 factorizations:
... 2*2 ... 2*4 3*3 .. 2*2*3 ... 2*8 . 2*3*3 . 2*2*5 ... 2*2*6
2*2*2 4*4 2*3*4
2*2*4 2*2*2*3
2*2*2*2
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Select[Tuples[First/@FactorInteger[#]&/@#], UnsameQ@@#&]=={}&]], {n, 100}]
CROSSREFS
The complement is counted by A368414.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 27 2023
STATUS
approved