login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368414
Number of factorizations of n into positive integers > 1 such that it is possible to choose a different prime factor of each factor.
37
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 6, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 9, 2, 2, 2
OFFSET
1,6
COMMENTS
For example, the factorization f = 2*3*6 has two ways to choose a prime factor of each factor, namely (2,3,2) and (2,3,3), but neither of these has all different elements, so f is not counted under a(36).
FORMULA
a(n) = A001055(n) - A368413(n).
EXAMPLE
The a(n) factorizations for selected n:
1 6 12 24 30 60 72 120
2*3 2*6 2*12 2*15 2*30 2*36 2*60
3*4 3*8 3*10 3*20 3*24 3*40
4*6 5*6 4*15 4*18 4*30
2*3*5 5*12 6*12 5*24
6*10 8*9 6*20
2*3*10 8*15
2*5*6 10*12
3*4*5 2*3*20
2*5*12
2*6*10
3*4*10
3*5*8
4*5*6
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join @@ Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Select[Tuples[First/@FactorInteger[#]&/@#], UnsameQ@@#&]!={}&]], {n, 100}]
CROSSREFS
For labeled graphs: A133686, complement A367867, A367868, A140638.
For unlabeled graphs: A134964, complement A140637.
For set-systems: A367902, ranks A367906, complement A367903, ranks A367907.
For non-isomorphic set-systems: A368095, complement A368094, A368409.
Complementary non-isomorphic multiset partitions: A368097, A355529, A368411.
For non-isomorphic multiset partitions: A368098, A368100.
The complement is counted by A368413.
For non-isomorphic set multipartitions: A368422, complement A368421.
For divisors instead of prime factors: A370813, complement A370814.
A001055 counts factorizations, strict A045778.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.
Sequence in context: A349056 A326516 A081707 * A303707 A335521 A323087
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 29 2023
STATUS
approved