OFFSET
1,6
COMMENTS
For example, the factorization f = 2*3*6 has two ways to choose a prime factor of each factor, namely (2,3,2) and (2,3,3), but neither of these has all different elements, so f is not counted under a(36).
EXAMPLE
The a(n) factorizations for selected n:
1 6 12 24 30 60 72 120
2*3 2*6 2*12 2*15 2*30 2*36 2*60
3*4 3*8 3*10 3*20 3*24 3*40
4*6 5*6 4*15 4*18 4*30
2*3*5 5*12 6*12 5*24
6*10 8*9 6*20
2*3*10 8*15
2*5*6 10*12
3*4*5 2*3*20
2*5*12
2*6*10
3*4*10
3*5*8
4*5*6
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join @@ Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Select[Tuples[First/@FactorInteger[#]&/@#], UnsameQ@@#&]!={}&]], {n, 100}]
CROSSREFS
The complement is counted by A368413.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 29 2023
STATUS
approved