OFFSET
1,6
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
EXAMPLE
The a(60) = 8 factorizations: (2*5*6), (3*4*5), (2*30), (3*20), (4*15), (5*12), (6*10), (60).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], UnsameQ@@Mean/@primeMS/@#&]], {n, 100}]
PROG
(PARI)
avgpis(n) = { my(f=factor(n)); f[, 1] = apply(primepi, f[, 1]); (1/bigomega(n))*sum(i=1, #f~, f[i, 2]*f[i, 1]); };
all_have_different_average_of_pis(facs) = if(!#facs, 1, (#Set(apply(avgpis, facs)) == #facs));
A326516(n, m=n, facs=List([])) = if(1==n, all_have_different_average_of_pis(facs), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs, d); s += A326516(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 12 2019
EXTENSIONS
Data section extended to a(105) by Antti Karttunen, Jan 20 2025
STATUS
approved