login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379141
If n = Product (p_j^k_j) then a(n) = numerator of Sum 1/k_j.
0
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 3, 1, 1, 2, 2, 2, 1, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 5, 1, 2, 3, 1, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 5, 1, 2, 1, 5, 2, 2, 2, 4, 1, 5, 2, 3, 2, 2, 2, 6, 1, 3, 3, 1, 1, 3, 1, 4, 3, 2, 1, 5, 1, 3
OFFSET
1,6
MAPLE
a:= n-> numer(add(1/i[2], i=ifactors(n)[2])):
seq(a(n), n=1..110); # Alois P. Heinz, Dec 16 2024
MATHEMATICA
Join[{0}, Table[Plus @@ (1/#[[2]] & /@ FactorInteger[n]), {n, 2, 110}]] // Numerator
PROG
(PARI) a(n) = my(f=factor(n)); numerator(sum(k=1, #f~, 1/f[k, 2])); \\ Michel Marcus, Dec 16 2024
CROSSREFS
KEYWORD
nonn,frac,new
AUTHOR
Ilya Gutkovskiy, Dec 16 2024
STATUS
approved