login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379144
a(n) is the number of iterations of the function x --> 2*x - 1 such that x remains prime, starting from A005382(n).
0
2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
Cunningham chain of the second kind of length i is a sequence of prime numbers (p_1, ..., p_i) such that p_(r + 1) = 2*p_r - 1 for all 1 =< r < i. This sequence tells the length of the Cunningham chain of the second kind for primes from A005382.
FORMULA
a(A110581(n)) = 1.
a(A057326(n)) = 2.
EXAMPLE
n = 1: A005382(1) = 2 --> 3 --> 5 --> 9, 9 is not a prime, thus a(1) = 2.
n = 3: A005382(3) = 7 --> 13 --> 25, 25 is not a prime, thus a(3) = 1.
MATHEMATICA
s[n_] := -2 + Length[NestWhileList[2*# - 1 &, n, PrimeQ[#] &]]; Select[Array[s, 5000], # > 0 &] (* Amiram Eldar, Dec 16 2024 *)
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Dec 16 2024
STATUS
approved