login
A379147
Irregular triangle T(n, k), n >= 0, k = 1..2^A007895(n), read by rows; the n-th row lists the integers m such that A184617(abs(m)) = A003714(n).
2
0, -1, 1, -2, 2, -4, 4, -5, -3, 3, 5, -8, 8, -9, -7, 7, 9, -10, -6, 6, 10, -16, 16, -17, -15, 15, 17, -18, -14, 14, 18, -20, -12, 12, 20, -21, -19, -13, -11, 11, 13, 19, 21, -32, 32, -33, -31, 31, 33, -34, -30, 30, 34, -36, -28, 28, 36
OFFSET
0,4
COMMENTS
A permutation of the integers (Z).
For any n >= 0:
- in the Zeckendorf expansion of n,
- replace each Fibonacci number, say A000045(2+i) with i >= 0, by 2^i or -2^i,
- the various values obtained make up the n-th row.
FORMULA
T(n, 1) = -A003714(n).
T(n, 2^A007895(n)) = A003714(n).
T(n, k) = -T(n, 2^A007895(n)+1-k) for k = 1..2^A007895(n).
EXAMPLE
Triangle T(n, k) begins:
n n-th row
-- ----------------------------------
0 0
1 -1, 1
2 -2, 2
3 -4, 4
4 -5, -3, 3, 5
5 -8, 8
6 -9, -7, 7, 9
7 -10, -6, 6, 10
8 -16, 16
9 -17, -15, 15, 17
10 -18, -14, 14, 18
11 -20, -12, 12, 20
12 -21, -19, -13, -11, 11, 13, 19, 21
13 -32, 32
14 -33, -31, 31, 33
15 -34, -30, 30, 34
PROG
(PARI) tozeck(n) = { for (i=0, oo, if (n<=fibonacci(2+i), my (v=0, f); forstep (j=i, 0, -1, if (n>=f=fibonacci(2+j), n-=f; v+=2^j; ); if (n==0, return (v); ); ); ); ); }
row(n) = { my (z = tozeck(n), r = [0], b); while (z, z -= b = 2^valuation(z, 2); r = concat([v - b | v <- r], [v + b | v <- r]); ); return (r); }
CROSSREFS
KEYWORD
sign,tabf,base
AUTHOR
Rémy Sigrist, Dec 16 2024
STATUS
approved