The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184617 With nonadjacent forms: A184615(n) + A184616(n). 4
 0, 1, 2, 5, 4, 5, 10, 9, 8, 9, 10, 21, 20, 21, 18, 17, 16, 17, 18, 21, 20, 21, 42, 41, 40, 41, 42, 37, 36, 37, 34, 33, 32, 33, 34, 37, 36, 37, 42, 41, 40, 41, 42, 85, 84, 85, 82, 81, 80, 81, 82, 85, 84, 85, 74, 73, 72, 73, 74, 69, 68, 69, 66, 65, 64, 65, 66, 69, 68, 69, 74, 73, 72, 73, 74, 85, 84, 85, 82, 81, 80, 81, 82 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS No two adjacent bits in the binary representations of a(n) are 1. The value 0 appears once, otherwise, if the binary representation of a(n) has k set bits then it appears 2^(k-1) times. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10922 Joerg Arndt, Matters Computational (The Fxtbook), pages 61-62. FORMULA a(n) = A184615(n) + A184616(n). a(n) = A178729(n)/2 = (n XOR n*3)/2. Note a(2^n) = 2^n. - Alex Ratushnyak, Aug 13 2012 EXAMPLE See A184615. MATHEMATICA a[n_] := Module[{nh, n3, c}, nh = BitShiftRight[n]; n3 = n + nh; c = BitXor[nh, n3]; BitAnd[n3, c] + BitAnd[nh, c]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 30 2019, from PARI code in A184615 *) PROG (PARI) (see A184615) (Python) for n in range(77):   print((n^(n*3))/2, end=', ') # Alex Ratushnyak, Aug 13 2012 CROSSREFS Cf. A178729. Cf. A184615 (positive parts), A184616 (negated negative parts). Sequence in context: A348027 A197288 A053424 * A290886 A163809 A075771 Adjacent sequences:  A184614 A184615 A184616 * A184618 A184619 A184620 KEYWORD nonn,look AUTHOR Joerg Arndt, Jan 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 26 15:11 EDT 2022. Contains 354884 sequences. (Running on oeis4.)