login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

With nonadjacent forms: A184615(n) + A184616(n).
6

%I #33 Sep 04 2021 13:28:04

%S 0,1,2,5,4,5,10,9,8,9,10,21,20,21,18,17,16,17,18,21,20,21,42,41,40,41,

%T 42,37,36,37,34,33,32,33,34,37,36,37,42,41,40,41,42,85,84,85,82,81,80,

%U 81,82,85,84,85,74,73,72,73,74,69,68,69,66,65,64,65,66,69,68,69,74,73,72,73,74,85,84,85,82,81,80,81,82

%N With nonadjacent forms: A184615(n) + A184616(n).

%C No two adjacent bits in the binary representations of a(n) are 1.

%C The value 0 appears once, otherwise, if the binary representation of a(n) has k set bits then it appears 2^(k-1) times.

%H Alois P. Heinz, <a href="/A184617/b184617.txt">Table of n, a(n) for n = 0..10922</a>

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, pages 61-62.

%F a(n) = A184615(n) + A184616(n).

%F a(n) = A178729(n)/2 = (n XOR n*3)/2. Note a(2^n) = 2^n. - _Alex Ratushnyak_, Aug 13 2012

%e See A184615.

%t a[n_] := Module[{nh, n3, c}, nh = BitShiftRight[n]; n3 = n + nh; c = BitXor[nh, n3]; BitAnd[n3, c] + BitAnd[nh, c]];

%t Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, May 30 2019, from PARI code in A184615 *)

%o (PARI) (see A184615)

%o (Python)

%o for n in range(77):

%o print((n^(n*3))/2, end=',')

%o # _Alex Ratushnyak_, Aug 13 2012

%Y Cf. A178729.

%Y Cf. A184615 (positive parts), A184616 (negated negative parts).

%K nonn,look

%O 0,3

%A _Joerg Arndt_, Jan 18 2011