login
A351414
Number of divisors of n that are either prime or have at least 1 square divisor > 1 and at least two distinct prime factors.
2
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 3, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 1, 2, 3, 1, 3, 2, 3, 1, 7, 1, 2, 3, 3, 2, 3, 1, 5, 1, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6
OFFSET
1,6
FORMULA
a(n) = Sum_{d|n} [[omega(d) = 1] = mu(d)^2], where [ ] is the Iverson bracket.
a(n) = A048105(n) + A361205(n). - Amiram Eldar, Oct 06 2023
EXAMPLE
a(24) = 4; 24 has divisors 2,3 (primes) and 12,24 (which both have at least 1 square divisor > 1 and at least two distinct prime factors).
a(36) = 5; 36 has divisors 2,3 (primes) and 12,18,36 (which all have at least 1 square divisor > 1 and at least two distinct prime factors).
MATHEMATICA
a[n_] := Module[{e = FactorInteger[n][[;; , 2]], d, nu, omega}, d = Times @@ (e+1); nu = Length[e]; omega = Total[e]; d - 2^nu - omega + 2*nu]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Oct 06 2023 *)
PROG
(PARI) a(n) = {my(f = factor(n), d = numdiv(f), nu = omega(f), om = bigomega(f)); d - 2^nu - om + 2*nu; } \\ Amiram Eldar, Oct 06 2023
CROSSREFS
Cf. A001221 (omega), A008683 (mu), A048105, A361205.
Sequence in context: A324191 A373957 A238946 * A349056 A326516 A081707
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Feb 10 2022
STATUS
approved