login
A028235
If n = Product (p_j^k_j), a(n) = numerator of Sum 1/p_j (the denominator of this sum is A007947).
11
0, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 5, 1, 9, 8, 1, 1, 5, 1, 7, 10, 13, 1, 5, 1, 15, 1, 9, 1, 31, 1, 1, 14, 19, 12, 5, 1, 21, 16, 7, 1, 41, 1, 13, 8, 25, 1, 5, 1, 7, 20, 15, 1, 5, 16, 9, 22, 31, 1, 31, 1, 33, 10, 1, 18, 61, 1, 19, 26, 59, 1, 5, 1, 39, 8, 21, 18, 71, 1, 7, 1, 43, 1, 41, 22, 45, 32
OFFSET
1,6
COMMENTS
For n=1, the empty sum = 0 = 0/1 = a(1)/A007947(1), thus a(1) should be 0. - Antti Karttunen, Mar 04 2018
LINKS
FORMULA
Fraction is additive with a(p^e) = 1/p.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A007947(k) = Sum_{p prime} 1/p^2 = 0.452247... (A085548). - Amiram Eldar, Sep 29 2023
a(n) = A003415(A007947(n)) = A069359(A007947(n)). - Antti Karttunen, Jan 22 2025
EXAMPLE
Fractions begin with 0, 1/2, 1/3, 1/2, 1/5, 5/6, 1/7, 1/2, 1/3, 7/10, 1/11, 5/6, ...
MATHEMATICA
a[1] = 0; a[n_] := 1/FactorInteger[n][[All, 1]] // Total // Numerator;
Array[a, 100] (* Jean-François Alcover, May 08 2019 *)
PROG
(PARI) A028235(n) = numerator(vecsum(apply(p->(1/p), factor(n)[, 1]))); \\ Antti Karttunen, Mar 04 2018
CROSSREFS
Cf. A007947 (denominators), A003415, A069359, A085548, A379967.
Sequence in context: A358016 A250097 A340678 * A028236 A066504 A367202
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Erich Friedman.
Term a(1) changed to 0 by Antti Karttunen, Mar 04 2018
STATUS
approved