The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028235 If n = Product (p_j^k_j), a(n) = numerator of Sum 1/p_j (the denominator of this sum is A007947). 4
 0, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 5, 1, 9, 8, 1, 1, 5, 1, 7, 10, 13, 1, 5, 1, 15, 1, 9, 1, 31, 1, 1, 14, 19, 12, 5, 1, 21, 16, 7, 1, 41, 1, 13, 8, 25, 1, 5, 1, 7, 20, 15, 1, 5, 16, 9, 22, 31, 1, 31, 1, 33, 10, 1, 18, 61, 1, 19, 26, 59, 1, 5, 1, 39, 8, 21, 18, 71, 1, 7, 1, 43, 1, 41, 22, 45, 32 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS For n=1, the empty sum = 0 = 0/1 = a(1)/A007947(1), thus a(1) should be 0. - Antti Karttunen, Mar 04 2018 LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 FORMULA Fraction is additive with a(p^e) = 1/p. MAPLE with(numtheory): P:=proc(n) local a, k; a:=ifactors(n)[2]; numer(add(1/a[k][1], k=1..nops(a))); end: seq(P(i), i=1..87); # Paolo P. Lava, Oct 17 2018 MATHEMATICA a[1] = 0; a[n_] := 1/FactorInteger[n][[All, 1]] // Total // Numerator; Array[a, 100] (* Jean-François Alcover, May 08 2019 *) PROG (PARI) A028235(n) = numerator(vecsum(apply(p->(1/p), factor(n)[, 1]))); \\ Antti Karttunen, Mar 04 2018 CROSSREFS Cf. A007947. Sequence in context: A284254 A309206 A250097 * A028236 A066504 A292771 Adjacent sequences:  A028232 A028233 A028234 * A028236 A028237 A028238 KEYWORD nonn,frac,easy AUTHOR EXTENSIONS More terms from Erich Friedman. Term a(1) changed to 0 by Antti Karttunen, Mar 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 9 20:46 EDT 2020. Contains 333363 sequences. (Running on oeis4.)