login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358016
a(n) is the largest k <= n-2 such that k^2 == 1 (mod n).
2
1, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 1, 11, 9, 1, 1, 1, 11, 13, 1, 1, 19, 1, 1, 1, 15, 1, 19, 1, 17, 23, 1, 29, 19, 1, 1, 25, 31, 1, 29, 1, 23, 26, 1, 1, 41, 1, 1, 35, 27, 1, 1, 34, 43, 37, 1, 1, 49, 1, 1, 55, 33, 51, 43, 1, 35, 47, 41, 1, 55, 1, 1, 49, 39, 43, 53
OFFSET
3,6
COMMENTS
It appears that the terms > 1 comprise the sequence A277777.
What is the asymptotic behavior of this sequence? Numerically, it seems like sum_{3 <= n <= x} a(n) is of the order x log x or so. - Charles R Greathouse IV, Oct 27 2022
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 3..10000
Project Euler, Problem 451. Modular inverses, where a(n) = I(n).
MATHEMATICA
lkn[n_]:=Module[{k=n-2}, While[PowerMod[k, 2, n]!=1, k--]; k]; Array[lkn, 80, 3] (* Harvey P. Dale, Sep 01 2023 *)
PROG
(Python)
def a(n):
for k in range(n - 2, 0, -1):
if pow(k, 2, n) == 1: return k
(Python)
from sympy.ntheory import sqrt_mod_iter
def A358016(n): return max(filter(lambda k: k<=n-2, sqrt_mod_iter(1, n))) # Chai Wah Wu, Oct 26 2022
(PARI) a(n) = forstep(k=n-2, 1, -1, if ((gcd(k, n) == 1) && (lift(Mod(1, n)/k) == k), return(k)); ); \\ Michel Marcus, Oct 25 2022
(PARI) rootsOfUnity(p, e, pe=p^e)=if(p>2, return(Mod([1, -1], pe))); if(e==1, return(Mod([1], 2))); if(e==2, return(Mod([1, 3], 4))); Mod([1, pe/2-1, pe/2+1, -1], pe)
a(n, f=factor(n))=my(v=apply(x->rootsOfUnity(x[1], x[2]), Col(f)), r, t); forvec(u=vector(#v, i, [1, #v[i]]), t=lift(chinese(vector(#u, i, v[i][u[i]]))); if(t>r && t<n-1, r=t)); r \\ Charles R Greathouse IV, Oct 26 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Darío Clavijo, Oct 24 2022
STATUS
approved