login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284252
a(n) = smallest prime dividing n which is larger than the square of smallest prime dividing n, or 1 if no such prime exists, a(1) = 1.
10
1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 1, 1, 1, 1, 5, 1, 11, 1, 1, 1, 13, 1, 7, 1, 5, 1, 1, 11, 17, 1, 1, 1, 19, 13, 5, 1, 7, 1, 11, 1, 23, 1, 1, 1, 5, 17, 13, 1, 1, 1, 7, 19, 29, 1, 5, 1, 31, 1, 1, 1, 11, 1, 17, 23, 5, 1, 1, 1, 37, 1, 19, 1, 13, 1, 5, 1, 41, 1, 7, 1, 43, 29, 11, 1, 5, 1, 23, 31, 47, 1, 1, 1, 7, 11, 5, 1, 17, 1, 13, 1, 53, 1, 1, 1, 5, 37
OFFSET
1,10
LINKS
FORMULA
a(n) = A020639(A284254(n)).
a(k) > 1 iff k is in A251727. - David A. Corneth, Mar 25 2017
EXAMPLE
For n=10 = 2*5, the smallest prime divisor > 2^2 is 5, thus a(10) = 5.
For n=15 = 3*5, there are no prime divisors > 3^2, thus a(15) = 1.
For n=165 = 3*5*11, the smallest prime divisor > 3^2 is 11, thus a(165) = 11.
MATHEMATICA
a[n_] := Block[{p = First /@ FactorInteger[n]}, SelectFirst[p, # > p[[1]]^2 &, 1]]; Array[a, 120] (* Giovanni Resta, Mar 24 2017 *)
PROG
(Scheme) (define (A284252 n) (let ((spf1 (A020639 n))) (let loop ((n (/ n spf1))) (let ((spf2 (A020639 n))) (cond ((= 1 spf2) 1) ((> spf2 (* spf1 spf1)) spf2) (else (loop (/ n spf2))))))))
(PARI) a(n) = if(n==1, return(1), my(f=factor(n)[, 1]); s = f[1]; for(i=2, #f, if(f[i]>s^2, return(f[i]))); return(1)) \\ David A. Corneth, Mar 24 2017
(Python)
from sympy import primefactors
def a(n):
for i in primefactors(n):
if i>min(primefactors(n))**2: return i
return 1
print([a(n) for n in range(1, 151)]) # Indranil Ghosh, Mar 24 2017
CROSSREFS
Cf. A251726 (gives the positions of ones after the initial a(1) = 1), A251727 (positions of terms > 1).
Sequence in context: A293718 A068316 A359945 * A284254 A309206 A358016
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 24 2017
STATUS
approved