login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284258
a(n) = number of distinct prime factors of n that are > the square of smallest prime factor of n, a(1) = 0.
11
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1
OFFSET
1,70
LINKS
FORMULA
a(n) = Sum_{p|n, p prime and > spf(n)^2} sign(p), where spf(n) (A020639) gives the smallest prime factor of n, and sign(p) = A057427(p) = 1 for all p.
a(n) = A001221(A284254(n)).
a(n) = A001221(n) - A284259(n).
a(n) <= A284256(n).
EXAMPLE
For n = 50, 2*5*5, the prime factor > 2^2 is 5, which is counted only once, thus a(50) = 1.
For n = 70, 2*5*7, the prime factors > 2^2 are 5 and 7, thus a(70) = 2.
MATHEMATICA
Table[If[n == 1, 0, Count[#, d_ /; d > First[#]^2] &@ FactorInteger[n][[All, 1]]], {n, 120}] (* Michael De Vlieger, Mar 24 2017 *)
PROG
(Scheme) (define (A284258 n) (A001221 (A284254 n)))
(PARI)
A(n) = if(n<2, return(1), my(f=factor(n)[, 1]); for(i=2, #f, if(f[i]>f[1]^2, return(f[i]))); return(1));
a(n) = if(A(n)==1, 1, A(n)*a(n/A(n)));
for(n=1, 150, print1(omega(a(n)), ", ")) \\ Indranil Ghosh, after David A. Corneth, Mar 24 2017
(Python)
from sympy import primefactors
def omega(n): return len(primefactors(n))
def A(n):
for i in primefactors(n):
if i>min(primefactors(n))**2: return i
return 1
def a(n): return 1 if A(n)==1 else A(n)*a(n//A(n))
print([omega(a(n)) for n in range(1, 151)]) # Indranil Ghosh, Mar 24 2017
CROSSREFS
Cf. A251726 (gives the positions of zeros after the initial a(1)=0).
Differs from related A284256 for the first time at n=50, where a(50)=1, while A284256(50)=2.
Sequence in context: A321936 A085491 A321013 * A322389 A336388 A277735
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 24 2017
STATUS
approved