login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085491
Number of ways to write n as sum of distinct divisors of n+1.
6
1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 5, 0, 0, 0, 3, 0, 2, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 31, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 26, 0, 0, 0, 0, 0, 1, 0, 6, 0, 0, 0, 23, 0, 0, 0, 1, 0, 20, 0, 0, 0, 0, 0, 21, 0, 0, 0, 1
OFFSET
0,12
COMMENTS
a(A085492(n)) = 0; a(A085493(n)) > 0; a(A085494(n)) = 1.
LINKS
FORMULA
a(n) = [x^n] Product_{d divides (n+1)} (1 + x^d). - Alois P. Heinz, Feb 04 2023
EXAMPLE
n=11, divisors of 12=11+1 that are not greater 11: {1,2,3,4,6}, 11=6+5=6+4+1, therefore a(11)=2.
MAPLE
a:= proc(m) option remember; local b, l; b, l:=
proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(l[i]>n, 0, b(n-l[i], i-1))))
end, sort([numtheory[divisors](m+1)[]]);
forget(b); b(m, nops(l)-1)
end:
seq(a(n), n=0..120); # Alois P. Heinz, Mar 12 2019
MATHEMATICA
a[n_] := Module[{dd}, dd = Select[Divisors[n+1], # <= n&]; Select[ IntegerPartitions[n, dd // Length, dd], Reverse[#] == Union[#]&] // Length]; Array[a, 100, 0] (* Jean-François Alcover, Mar 12 2019 *)
CROSSREFS
Cf. A085496.
Sequence in context: A280751 A280749 A321936 * A321013 A284258 A322389
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 03 2003
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Mar 12 2019
STATUS
approved