login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085493
Numbers k having partitions into distinct divisors of k + 1.
7
1, 3, 5, 7, 11, 15, 17, 19, 23, 27, 29, 31, 35, 39, 41, 47, 53, 55, 59, 63, 65, 69, 71, 77, 79, 83, 87, 89, 95, 99, 103, 107, 111, 119, 125, 127, 131, 139, 143, 149, 155, 159, 161, 167, 175, 179, 191, 195, 197, 199, 203, 207, 209, 215, 219, 223, 227, 233, 239
OFFSET
1,2
COMMENTS
A085491(a(n)) > 0; complement of A085492.
LINKS
Paul K. Stockmeyer, Of camels, inheritance, and unit fractions, Math Horizons, 21 (2013), 8-11.
FORMULA
{k > 0 : 0 < [x^k] Product_{d divides (k+1)} (1+x^d)}. - Alois P. Heinz, Feb 04 2023
EXAMPLE
The divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42. Since 6 + 14 + 21 = 41, 41 is in the sequence.
The divisors of 43 are 1, 43. Since no selection of these divisors can possibly add up to 42, this means that 42 is not in the sequence.
MAPLE
q:= proc(m) option remember; local b, l; b, l:=
proc(n, i) option remember; n=0 or i>=1 and
(l[i]<=n and b(n-l[i], i-1) or b(n, i-1))
end, sort([numtheory[divisors](m+1)[]]);
b(m, nops(l)-1)
end:
select(q, [$1..300])[]; # Alois P. Heinz, Feb 04 2023
MATHEMATICA
divNextableQ[n_] := TrueQ[Length[Select[Subsets[Divisors[n + 1]], Plus@@# == n &]] > 0]; Select[Range[100], divNextableQ] (* Alonso del Arte, Jan 07 2023 *)
PROG
(Scala) def divisors(n: Int): IndexedSeq[Int] = (1 to n).filter(n % _ == 0)
def divPartSums(n: Int): List[Int] = divisors(n).toSet.subsets.toList.map(_.sum)
(1 to 128).filter(n => divPartSums(n + 1).contains(n)) // Alonso del Arte, Jan 26 2023
CROSSREFS
Sequence in context: A356065 A082418 A319899 * A343621 A139252 A076245
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 03 2003
STATUS
approved