login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358014
Expansion of e.g.f. 1/(1 - x^3 * (exp(x) - 1)).
5
1, 0, 0, 0, 24, 60, 120, 210, 40656, 363384, 2117520, 9980190, 520250280, 9496208436, 109522054824, 982593614730, 28426015541280, 762523155318000, 14192088961120416, 204618562767970614, 4906638448867994040, 154037798077765359660, 4000484484370905087480
OFFSET
0,5
FORMULA
a(0) = 1; a(n) = n! * Sum_{k=4..n} 1/(k-3)! * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/4)} k! * Stirling2(n-3*k,k)/(n-3*k)!.
MATHEMATICA
With[{nn=30}, CoefficientList[Series[1/(1-x^3 (Exp[x]-1)), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 26 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^3*(exp(x)-1))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=4, i, 1/(j-3)!*v[i-j+1]/(i-j)!)); v;
(PARI) a(n) = n!*sum(k=0, n\4, k!*stirling(n-3*k, k, 2)/(n-3*k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 24 2022
STATUS
approved