login
A367202
If n = Product(p_i^e_i), a(n) = Sum_{i = 1..k}(rad(n)/p_i)^e_i, where rad is A007947.
1
0, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 11, 1, 9, 8, 1, 1, 7, 1, 27, 10, 13, 1, 29, 1, 15, 1, 51, 1, 31, 1, 1, 14, 19, 12, 13, 1, 21, 16, 127, 1, 41, 1, 123, 28, 25, 1, 83, 1, 9, 20, 171, 1, 11, 16, 345, 22, 31, 1, 241, 1, 33, 52, 1, 18, 61, 1, 291, 26, 59, 1, 31, 1
OFFSET
1,6
COMMENTS
Diverges from A028235 at a(12).
LINKS
Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^16.
Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^14, showing primes in red, composite prime powers in gold, squarefree composites in green, and numbers neither squarefree nor prime powers in blue, highlighting squareful numbers that are not prime powers in large light blue.
FORMULA
For n a prime power p^k, a(n) = (p/p)^1 = 1.
For n a squarefree semiprime a(n) = A001414(n).
For p,q distinct primes a(p*q^2) = q + p^2.
For n a squarefree number with prime divisors p_1,p_2..p_k, a(n) = Sum_{i = 1..k}(n/p_i) see Example
EXAMPLE
a(1) = 0, the empty sum.
rad(6) = rad(2*3) = 6 -->a(6) = (6/2)^1 + (6/3)^1 = 3 + 2 = 5.
rad(12) = rad(2^2*3) = 6 -->a(12) = (6/2)^2 + (6/3)^1 = 9 + 2 = 11.
rad(36) = rad(2^2*3^2) = 6 --> a(36) = (6/2)^2 +(6/3)^2 = 9 + 4 = 13.
rad(40) = rad(2^3*5^1) = 10 -->a(40) = (10/2)^3 + (10/5)^1 = 125 + 2 = 127.
n = 30 = 2*3*5 a squarefree number; a(30) = (30/2) + (30/3) + (30/5) = 15 + 10 + 6 = 31
MATHEMATICA
Array[Function[{r, w}, Total[Power @@@ Transpose@ {r/w[[All, 1]], w[[All, -1]]}]] @@ {Times @@ #[[All, 1]], #} &@ FactorInteger[#] &, 120] (* Michael De Vlieger, Nov 10 2023 *)
PROG
(PARI) rad(f) = factorback(f[, 1]);
a(n) = my(f=factor(n)); sum(i=1, #f~, (rad(f)/f[i, 1])^f[i, 2]); \\ Michel Marcus, Nov 10 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michael De Vlieger, Nov 10 2023
STATUS
approved