login
A367204
Number of diagonals in a regular n-gon that are parallel to an edge.
4
0, 0, 5, 3, 14, 8, 27, 15, 44, 24, 65, 35, 90, 48, 119, 63, 152, 80, 189, 99, 230, 120, 275, 143, 324, 168, 377, 195, 434, 224, 495, 255, 560, 288, 629, 323, 702, 360, 779, 399, 860, 440, 945, 483, 1034, 528, 1127, 575, 1224, 624, 1325, 675, 1430, 728, 1539, 783
OFFSET
3,3
COMMENTS
A diagonal is parallel to an edge if and only if, on at least one side of the diagonal, there is an odd number of edges.
If n is odd, all of the diagonals of the n-gon are parallel to an edge.
FORMULA
a(n) = n(n-3)/2 = A000096(n-3) if n is odd;
a(n) = n(n-4)/4 = A005563((n-4)/2) = A000096(n-3) - A002378(n/2-1) if n is even.
MATHEMATICA
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 0, 5, 3, 14, 8}, 100] (* or *)
A367204[n_]:=If[OddQ[n], n(n-3)/2, n(n-4)/4]; Array[A367204, 100, 3]
PROG
(Python)
def A367204(n): return n*(n-3)>>1 if n&1 else n*(n-4)>>2 # Chai Wah Wu, Nov 22 2023
CROSSREFS
Even-indexed terms of A000096 interleaved with A005563.
Sequence in context: A083594 A178497 A364888 * A213750 A213774 A167583
KEYWORD
nonn,easy
AUTHOR
Paolo Xausa, Nov 10 2023
STATUS
approved