login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213774
Rectangular array: (row n) = b**c, where b(h) = F(h+1), c(h) = 2*n-3+2*h, F=A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.
4
1, 5, 3, 14, 11, 5, 31, 26, 17, 7, 61, 53, 38, 23, 9, 112, 99, 75, 50, 29, 11, 197, 176, 137, 97, 62, 35, 13, 337, 303, 240, 175, 119, 74, 41, 15, 566, 511, 409, 304, 213, 141, 86, 47, 17, 939, 850, 685, 515, 368, 251, 163, 98, 53, 19, 1545, 1401, 1134
OFFSET
1,2
COMMENTS
Principal diagonal: A213775.
Antidiagonal sums: A213776.
Row 1, (1,2,3,5,8,...)**(1,3,5,7,9,...): A023652.
Row 2, (1,2,3,5,8,...)**(3,5,7,9,11,...).
Row 3, (1,2,3,5,8,...)**(5,7,9,11,13,...).
For a guide to related arrays, see A213500.
LINKS
FORMULA
T(n,k) = 3*T(n,k-1)-2*T(n,k-2)-T(n,k-3)+T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(2*n - 1 + 2*x - (2*n - 3)*x^2) and g(x) = (1 - x - x^2)*(1 - x )^2.
T(n,k) = 2*n*Fibonacci(k+3) + Lucas(k+3) - 4*(k+n+1). - Ehren Metcalfe, Jul 08 2019
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....5....14...31....61....112
3....11...26...53....99....176
5....17...38...75....137...240
7....23...50...97....175...304
9....29...62...119...213...368
11...35...74...141...251...432
MATHEMATICA
b[n_] := Fibonacci[n + 1]; c[n_] := 2 n - 1;
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213774 *)
Table[t[n, n], {n, 1, 40}] (* A213775 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213776 *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jun 21 2012
STATUS
approved