OFFSET
1,2
COMMENTS
LINKS
Clark Kimberling, Antidiagonals n=1..80, flattened
FORMULA
T(n,k) = 3*T(n,k-1)-2*T(n,k-2)-T(n,k-3)+T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(2*n - 1 - (2*n - 3)*x) and g(x) = (1 - x - x^2)(1 - x )^2.
T(n,k) = 2*n*Fibonacci(k+2) + Lucas(k+2) - 2*(k+n) - 3. - Ehren Metcalfe, Jul 08 2019
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....4....10...21...40....72....125
3....8....18...35...64....112...191
5....12...26...49...88....152...257
7....16...34...63...112...192...323
9....20...42...77...136...232...389
11...24...50...91...160...272...455
MATHEMATICA
b[n_] := Fibonacci[n]; c[n_] := 2 n - 1;
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213768 *)
Table[t[n, n], {n, 1, 40}] (* A213769 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213770 *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Jun 21 2012
STATUS
approved