OFFSET
1,2
COMMENTS
LINKS
Clark Kimberling, Antidiagonals n = 1..60, flattened
FORMULA
T(n,k) = 3*T(n,k-1)-2*T(n,k-2)-T(n,k-3)+T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(F(n) + F(n+1)*x - F(n-1)*x^2) and g(x) = (1 - x - x^2)(1 - x )^2.
T(n,k) = F(n+k+4) - 2*k*F(n+1) - F(n+4), F = A000045. - Ehren Metcalfe, Jul 10 2019
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....4....10....21....40....72
1....5....14....31....61....112
2....9....24....52....101...184
3....14...38....83....162...296
5....23...62....135...263...480
8....37...100...218...425...776
13...60...162...353...688...1256
MATHEMATICA
b[n_] := 2 n - 1; c[n_] := Fibonacci[n];
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213765 *)
Table[t[n, n], {n, 1, 40}] (* A213766 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213767 *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Jun 21 2012
STATUS
approved