login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213765
Rectangular array: (row n) = b**c, where b(h) = 2*n-1, c(h) = F(n-1+h), F=A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.
4
1, 4, 1, 10, 5, 2, 21, 14, 9, 3, 40, 31, 24, 14, 5, 72, 61, 52, 38, 23, 8, 125, 112, 101, 83, 62, 37, 13, 212, 197, 184, 162, 135, 100, 60, 21, 354, 337, 322, 296, 263, 218, 162, 97, 34, 585, 566, 549, 519, 480, 425, 353, 262, 157, 55, 960, 939, 920, 886
OFFSET
1,2
COMMENTS
Principal diagonal: A213766.
Antidiagonal sums: A213767.
Row 1, (1,3,5,7,9,...)**(1,1,2,3,5,...): A001891.
Row 2, (1,3,5,7,9,...)**(1,2,3,5,8,...): A023652.
Row 3, (1,3,5,7,9,...)**(2,3,5,8,13,...).
For a guide to related arrays, see A213500.
LINKS
FORMULA
T(n,k) = 3*T(n,k-1)-2*T(n,k-2)-T(n,k-3)+T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(F(n) + F(n+1)*x - F(n-1)*x^2) and g(x) = (1 - x - x^2)(1 - x )^2.
T(n,k) = F(n+k+4) - 2*k*F(n+1) - F(n+4), F = A000045. - Ehren Metcalfe, Jul 10 2019
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....4....10....21....40....72
1....5....14....31....61....112
2....9....24....52....101...184
3....14...38....83....162...296
5....23...62....135...263...480
8....37...100...218...425...776
13...60...162...353...688...1256
MATHEMATICA
b[n_] := 2 n - 1; c[n_] := Fibonacci[n];
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213765 *)
Table[t[n, n], {n, 1, 40}] (* A213766 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213767 *)
CROSSREFS
Cf. A213500.
Sequence in context: A186368 A185676 A277583 * A349809 A182971 A062145
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jun 21 2012
STATUS
approved