login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213762
Rectangular array: (row n) = b**c, where b(h) = 2^(h-1), c(h) = 2*n-3+2*h, n>=1, h>=1, and ** = convolution.
4
1, 5, 3, 15, 11, 5, 37, 29, 17, 7, 83, 67, 43, 23, 9, 177, 145, 97, 57, 29, 11, 367, 303, 207, 127, 71, 35, 13, 749, 621, 429, 269, 157, 85, 41, 15, 1515, 1259, 875, 555, 331, 187, 99, 47, 17, 3049, 2537, 1769, 1129, 681, 393, 217, 113, 53, 19, 6119
OFFSET
1,2
COMMENTS
Principal diagonal: A213763.
Antidiagonal sums: A213764.
Row 1, (1,2,4,8,16,...)**(1,3,5,7,9,...): A050488.
Row 2, (1,2,4,8,16,...)**(3,5,7,9,11,...).
Row 3, (1,2,4,8,16,...)**(5,7,9,11,13,...).
For a guide to related arrays, see A213500.
LINKS
FORMULA
T(n,k) = 4*T(n,k-1)-5*T(n,k-2)+2*T(n,k-3).
G.f. for row n: f(x)/g(x), where f(x) = x*(2*n - 1 - (2*n - 3)*x) and g(x) = (1 - 2*x)(1 - x )^2.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....5....15...37....83....177
3....11...29...67....145...303
5....17...43...97....207...429
7....23...57...127...269...555
9....29...71...157...331...681
11...35...85...187...393...807
MATHEMATICA
b[n_] := 2^(n - 1); c[n_] := 2 n - 1;
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213762 *)
Table[t[n, n], {n, 1, 40}] (* A213763 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213764 *)
CROSSREFS
Sequence in context: A166465 A162813 A146934 * A178067 A213548 A246204
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jun 20 2012
STATUS
approved