login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166465
a(n) = 3*a(n-2) for n > 2; a(1) = 1, a(2) = 5.
1
1, 5, 3, 15, 9, 45, 27, 135, 81, 405, 243, 1215, 729, 3645, 2187, 10935, 6561, 32805, 19683, 98415, 59049, 295245, 177147, 885735, 531441, 2657205, 1594323, 7971615, 4782969, 23914845, 14348907, 71744535, 43046721, 215233605, 129140163
OFFSET
1,2
COMMENTS
Interleaving of A000244 and A005030.
Second binomial transform is A054485.
Fifth binomial transform is A153596.
FORMULA
a(n) = (4 + (-1)^n) * 3^((2*n - 5 + (-1)^n)/4).
G.f.: x*(1+5*x)/(1-3*x^2).
a(n) = A162813(n-1), for n >= 2.
From G. C. Greubel, Jul 27 2024: (Start)
a(n) = (1/6)*3^(n/2)*( 5*(1+(-1)^n) + sqrt(3)*(1-(-1)^n) ).
E.g.f.: (1/3)*(sqrt(3)*sinh(sqrt(3)*x) + 10*(sinh(sqrt(3)*x/2))^2). (End)
MATHEMATICA
LinearRecurrence[{0, 3}, {1, 5}, 41] (* G. C. Greubel, Jul 27 2024 *)
PROG
(Magma) [ n le 2 select 4*n-3 else 3*Self(n-2): n in [1..35] ];
(SageMath) [3^(n/2)*(5*((n+1)%2) +sqrt(3)*(n%2))/3 for n in range(1, 41)] # G. C. Greubel, Jul 27 2024
CROSSREFS
Cf. A000244 (powers of 3), A005030 (5*3^n), A054485, A153596, A162813.
Sequence in context: A248983 A298975 A070375 * A162813 A146934 A213762
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Oct 14 2009
STATUS
approved