login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054485
Expansion of (1+3*x)/(1-4*x+x^2).
4
1, 7, 27, 101, 377, 1407, 5251, 19597, 73137, 272951, 1018667, 3801717, 14188201, 52951087, 197616147, 737513501, 2752437857, 10272237927, 38336513851, 143073817477, 533958756057, 1992761206751, 7437086070947, 27755583077037
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
LINKS
I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = (7*((2+sqrt(3))^n - (2-sqrt(3))^n) - ((2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1)))/2*sqrt(3).
a(n) = 4*a(n-1) - a(n-2), a(0)=1, a(0)=7.
a(n) = ChebyshevU(n,2) + 3*Chebyshev(n-1,2) = ChebyshevT(n,2) + 5*ChebyshevU(n-1,2). - G. C. Greubel, Jan 19 2020
MAPLE
seq( simplify(ChebyshevU(n, 2) +3*ChebyshevU(n-1, 2)), n=0..30); # G. C. Greubel, Jan 19 2020
MATHEMATICA
LinearRecurrence[{4, -1}, {1, 7}, 40] (* Vincenzo Librandi, Jun 23 2012 *)
Table[ChebyshevU[n, 2] +3*ChebyshevU[n-1, 2], {n, 0, 30}] (* G. C. Greubel, Jan 19 2020 *)
PROG
(Magma) I:=[1, 7]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in[1..30]]; // Vincenzo Librandi, Jun 23 2012
(PARI) Vec((1+3*x)/(1-4*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 20 2015
(PARI) vector(31, n, polchebyshev(n-1, 1, 2) +5*polchebyshev(n-2, 2, 2) ) \\ G. C. Greubel, Jan 19 2020
(Sage) [chebyshev_U(n, 2) + 3*chebyshev_U(n-1, 2) for n in (0..30)] # G. C. Greubel, Jan 19 2020
(GAP) a:=[1, 7];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 19 2020
CROSSREFS
Cf. A054491.
Sequence in context: A282642 A185080 A006350 * A090856 A055917 A056120
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 06 2000
STATUS
approved