login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054488
Expansion of (1+2*x)/(1-6*x+x^2).
10
1, 8, 47, 274, 1597, 9308, 54251, 316198, 1842937, 10741424, 62605607, 364892218, 2126747701, 12395593988, 72246816227, 421085303374, 2454265004017, 14304504720728, 83372763320351, 485932075201378, 2832219687887917
OFFSET
0,2
COMMENTS
Bisection (even part) of Chebyshev sequence with Diophantine property.
b(n)^2 - 8*a(n)^2 = 17, with the companion sequence b(n)= A077240(n).
The odd part is A077413(n) with Diophantine companion A077239(n).
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.
FORMULA
a(n) = 6*a(n-1) - a(n-2), a(0)=1, a(1)=8.
a(n) = ((3 + 2*sqrt(2))^(n+1) - (3 - 2*sqrt(2))^(n+1) + 2*((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n))/(4*sqrt(2)).
a(n) = S(n, 6) + 2*S(n-1, 6), with S(n, x) Chebyshev's polynomials of the second kind, A049310. S(n, 6) = A001109(n+1).
a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-9)^k. - Philippe Deléham, Mar 05 2014
a(n) = (Pell(2*n+2) + 2*Pell(2*n))/2 = (Pell-Lucas(2*n+1) + Pell(2*n))/2. - G. C. Greubel, Jan 19 2020
E.g.f.: (1/4)*exp(3*x)*(4*cosh(2*sqrt(2)*x) + 5*sqrt(2)*sinh(2*sqrt(2)*x)). - Stefano Spezia, Jan 27 2020
EXAMPLE
8 = a(1) = sqrt((A077240(1)^2 - 17)/8) = sqrt((23^2 - 17)/8)= sqrt(64) = 8.
MAPLE
a[0]:=1: a[1]:=8: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
MATHEMATICA
LinearRecurrence[{6, -1}, {1, 8}, 30] (* Harvey P. Dale, Oct 09 2017 *)
Table[(LucasL[2*n+1, 2] + Fibonacci[2*n, 2])/2, {n, 0, 30}] (* G. C. Greubel, Jan 19 2020 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1+2*x)/(1-6*x+x^2)) \\ G. C. Greubel, Jan 19 2020
(PARI) apply( {A054488(n)=[1, 8]*([0, -1; 1, 6]^n)[, 1]}, [0..30]) \\ M. F. Hasler, Feb 27 2020
(Magma) I:=[1, 8]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 19 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 21); Coefficients(R!( (1+2*x)/(1-6*x+x^2))); // Marius A. Burtea, Jan 20 2020
(Sage) [(lucas_number2(2*n+1, 2, -1) + lucas_number1(2*n, 2, -1))/2 for n in (0..30)] # G. C. Greubel, Jan 19 2020
(GAP) a:=[1, 8];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 19 2020
CROSSREFS
Cf. A077241 (even and odd parts).
Sequence in context: A255720 A014524 A098891 * A034349 A296797 A024108
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 04 2000
EXTENSIONS
More terms from James A. Sellers, May 05 2000
Chebyshev comments from Wolfdieter Lang, Nov 08 2002
STATUS
approved