The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054491 a(n) = 4*a(n-1) - a(n-2), a(0)=1, a(1)=6. 11
 1, 6, 23, 86, 321, 1198, 4471, 16686, 62273, 232406, 867351, 3236998, 12080641, 45085566, 168261623, 627960926, 2343582081, 8746367398, 32641887511, 121821182646, 454642843073, 1696750189646, 6332357915511, 23632681472398 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Bisection (even part) of Chebyshev sequence with Diophantine property. The odd part is A077234 with Diophantine companion A077235. REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193. E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242. Tanya Khovanova, Recursive Sequences Index entries for sequences related to Chebyshev polynomials. Index entries for linear recurrences with constant coefficients, signature (4,-1). FORMULA -3*a(n)^2 + A077236(n)^2 = 13. a(n) = ( 6*((2+sqrt(3))^n-(2-sqrt(3))^n) - ((2+sqrt(3))^(n-1)-(2-sqrt(3))^(n-1)) )/(2*sqrt(3)). a(n) = 6*S(n-1, 4) - S(n-2, 4) = S(n, 4) + 2*S(n-1, 4), with S(n, x) := U(n, x/2) Chebyshev's polynomials of 2nd kind, A049310. S(-1, x) := 0, S(-2, x) := -1, S(n, 4)= A001353(n+1). G.f.: (1+2*x)/(1-4*x+x^2). a(n+1) = A001353(n+2) + 2*A001353(n+1) - Creighton Dement, Nov 28 2004. Comment from Vim Wenders, Mar 26 2008: This is easily verified using a(n) = (6*( (2+sqrt(3))^n - (2-sqrt(3))^n ) - ( (2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1) ))/(2*sqrt(3)) and A001353(n) = ( (2+sqrt(3))^n - (2-sqrt(3))^n )/(2*sqrt(3)). a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-7)^k. - Philippe Deléham, Mar 05 2014 E.g.f.: (1/3)*exp(2*x)*(3*cosh(sqrt(3)*x) + 4*sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Jan 27 2020 MAPLE seq( simplify(ChebyshevU(n, 2) +2*ChebyshevU(n-1, 2)), n=0..30); # G. C. Greubel, Jan 15 2020 MATHEMATICA Table[ChebyshevU[n, 2] +2*ChebyshevU[n-1, 2], {n, 0, 30}] (* G. C. Greubel, Jan 15 2020 *) LinearRecurrence[{4, -1}, {1, 6}, 30] (* Harvey P. Dale, Sep 04 2021 *) PROG (PARI) a(n) = if (n==0, 1, if (n==1, 6, 4*a(n-1)-a(n-2))) \\ Michel Marcus, Jun 23 2013 (PARI) a(n) = polchebyshev(n, 2, 2) + 2*polchebyshev(n-1, 2, 2); \\ Michel Marcus, Oct 13 2021 (Magma) I:=[1, 6]; [n le 2 select I[n] else 4*Self(n-1) -Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 15 2020 (Sage) [chebyshev_U(n, 2) +2*chebyshev_U(n-1, 2) for n in (0..30)]; # G. C. Greubel, Jan 15 2020 (GAP) a:=[1, 6];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 15 2020 CROSSREFS Cf. A001353, A001834, A077234, A077235. Sequence in context: A006815 A264690 A241394 * A282710 A295132 A013261 Adjacent sequences: A054488 A054489 A054490 * A054492 A054493 A054494 KEYWORD easy,nonn AUTHOR Barry E. Williams, May 04 2000 EXTENSIONS Chebyshev comments from Wolfdieter Lang, Nov 08 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 21:35 EDT 2024. Contains 373401 sequences. (Running on oeis4.)