login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077235
Bisection (odd part) of Chebyshev sequence with Diophantine property.
6
5, 16, 59, 220, 821, 3064, 11435, 42676, 159269, 594400, 2218331, 8278924, 30897365, 115310536, 430344779, 1606068580, 5993929541, 22369649584, 83484668795, 311569025596, 1162791433589, 4339596708760, 16195595401451, 60442784897044, 225575544186725
OFFSET
0,1
COMMENTS
a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n) = A077234(n).
The even part is A077236(n) with Diophantine companion A054491(n).
FORMULA
a(n) = 2*T(n+1, 2)+T(n, 2), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 2)= A001075(n).
G.f.: (5-4*x)/(1-4*x+x^2).
a(n) = 4*a(n-1)-a(n-2) with a(0)=5 and a(1)=16. - Philippe Deléham, Nov 16 2008
EXAMPLE
16 = a(1) = sqrt(3*A077234(1)^2 + 13) = sqrt(3*9^2 + 13)= sqrt(256) = 16.
PROG
(PARI) Vec((5-4*x)/(1-4*x+x^2) + O(x^100)) \\ Colin Barker, Jun 16 2015
CROSSREFS
Cf. A077238 (even and odd parts).
Sequence in context: A116914 A047103 A226897 * A203232 A098347 A203414
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved