OFFSET
1,2
COMMENTS
The sequence was derived from the documents in the Links section. The documents are first specified in the Links section of A034295.
LINKS
Jon E. Schoenfield, Table of solutions for n <= 12
Alois P. Heinz, More ways to divide an 11 X 11 square into sub-squares
EXAMPLE
For n = 3, the partitions are:
Square side 1 2 3 Total Parts
9 0 0 9
5 1 0 6
0 0 1 1
Total 16
So a(3) = 16.
MAPLE
b:= proc(n, l) option remember; local i, k, s, t;
if max(l[])>n then {} elif n=0 or l=[] then {0}
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; s:={};
for i from k to nops(l) while l[i]=0 do s:=s union
map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,
1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
od; s
fi
end:
a:= n-> add(coeff(add(j, j=b(n, [0$n])), x, i), i=1..n):
seq(a(n), n=1..9); # Alois P. Heinz, Jun 21 2013
MATHEMATICA
$RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which [Max[l]>n, {}, n == 0 || l == {}, {0}, Min[l]>0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1, 1][[1, 1]]; s = {}; For[i = k, i <= Length[l] && l[[i]]== 0, i++, s = s ~Union~ Map[Function[{v}, v+x^(1+i-k)], b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; -1]] ]]]]; s]]; a[n_] := Sum[Coefficient[Sum[j, {j, b[n, Array[0&, n]]}], x, i], {i, 1, n}]; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, May 29 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Christopher Hunt Gribble, Jun 21 2013
STATUS
approved