login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098347
A sequence derived from a Ferrers graph partition of 16.
0
1, 5, 16, 60, 213, 771, 2772, 9990, 35973, 129573, 466668, 1680804, 6053697, 21803499, 78529176, 282836934, 1018687833, 3668986773, 13214513016, 47594435868, 171419886333, 617399427555, 2223674634060, 8008962525846
OFFSET
1,2
COMMENTS
One of the partitions of 16 is 5+5+2+2+1. Convert this Ferrers graph representation to a 5 X 5 binary matrix.
Lim_{n->inf.} = 3.60167913188315425246437..., the characteristic polynomial of m & m^-1 is x^5-3x^4-3x^3+3x^2 and its only positive root is the limit.
FORMULA
a(1)=1, a(2)=5, a(3)=16, a(n) = 3a(n-1) + 3a(n-2) - 3a(n-3).
G.f.: -x*(2*x^2-2*x-1) / (3*x^3-3*x^2-3*x+1). - Colin Barker, Oct 19 2013
EXAMPLE
a(4)=60 because m^4.{1,0,0,0,0} = {60, 60, 45, 32, 16} and the first or second element is 60.
MATHEMATICA
a[1] = 1; a[2] = 5; a[3] = 16; a[n_] := a[n] = 3a[n - 1] + 3a[n - 2] - 3a[n - 3]; Table[ a[n], {n, 24}] (* Or *)
m = {{1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, {1, 1, 1, 0, 0}, {1, 1, 0, 0, 0}, {1, 0, 0, 0, 0}}; Table[(MatrixPower[m, n].{1, 0, 0, 0, 0})[[1]], {n, 24}]
PROG
(PARI) Vec(-x*(2*x^2-2*x-1)/(3*x^3-3*x^2-3*x+1) + O(x^100)) \\ Colin Barker, Oct 19 2013
CROSSREFS
Sequence in context: A226897 A077235 A203232 * A203414 A189450 A180719
KEYWORD
nonn,easy,changed
AUTHOR
STATUS
approved