login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034295
Number of different ways to divide an n X n square into sub-squares, considering only the list of parts.
26
1, 2, 3, 7, 11, 31, 57, 148, 312, 754, 1559, 3844, 7893, 17766, 37935, 83667, 170165, 369698, 743543, 1566258, 3154006, 6424822, 12629174, 25652807, 49802454, 98130924, 189175310, 368095797
OFFSET
1,2
COMMENTS
Number of ways an n X n square can be cut into integer-sided squares: collections of integers {a_i} so that squares of length a_i tile an n X n square.
This ignores the way the squares are arranged. We are only counting the lists of parts (compare A045846).
Also applies to the partitions of an equilateral triangle of length n. - Robert G. Wilson v
LINKS
Jon E. Schoenfield, Table of solutions for n <= 12 (Caution: this table is missing 6 of the ways to divide an 11 X 11 square into sub-squares! Please see the Alois P. Heinz link listing those six ways. Thanks to Alois for catching this! -- Jon E. Schoenfield)
EXAMPLE
From Jon E. Schoenfield, Sep 18 2008: (Start)
a(3) = 3 because the 3 X 3 square can be divided into sub-squares in 3 different ways: a single 3 X 3 square, a 2 X 2 square plus five 1 X 1 squares, or nine 1 X 1 squares.
There are a(5) = 11 different ways to divide a 5 X 5 square into sub-squares:
1. 25(1 X 1)
2. 1(2 X 2) + 21(1 X 1)
3. 2(2 X 2) + 17(1 X 1)
4. 3(2 X 2) + 13(1 X 1)
5. 4(2 X 2) + 9(1 X 1)
6. 1(3 X 3) + 16(1 X 1)
7. 1(3 X 3) + 1(2 X 2) + 12(1 X 1)
8. 1(3 X 3) + 2(2 X 2) + 8(1 X 1)
9. 1(3 X 3) + 3(2 X 2) + 4(1 X 1)
10. 1(4 X 4) + 9(1 X 1)
11. 1(5 X 5)
a(9) = 312 because the 9 X 9 square can be divided into 312 different combinations of sub-squares such as three 4 X 4 squares plus thirty-three 1 X 1 squares, etc. (End)
MAPLE
b:= proc(n, l) option remember; local i, k, s;
if max(l[])>n then {} elif n=0 then {0}
elif min(l[])>0 then (t->b(n-t, map(h->h-t, l)))(min(l[]))
else for k while l[k]>0 do od; s:={};
for i from k to nops(l) while l[i]=0 do s:=s union
map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,
1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
od; s
fi
end:
a:= n-> nops(b(n, [0$n])):
seq(a(n), n=1..9); # Alois P. Heinz, Apr 15 2013
MATHEMATICA
$RecursionLimit = 1000; b[n_, l_] := b[n, l] = Module[{i, k, m, s, t}, Which[Max[l]>n, {}, n == 0 || l == {}, {{}}, Min[l]>0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[Function[x, Sort[Append[x, 1+i-k]]], b[n, Join[l[[1 ;; k-1]], Array[1+i-k &, i-k+1], l[[i+1 ;; -1]]]]]]; s]]; a[n_] := a[n] = b[n, Array[0&, n]] // Length; Table[Print[a[n]]; a[n], {n, 1, 12} ] (* Jean-François Alcover, Feb 18 2014, after Alois P. Heinz *)
CROSSREFS
Cf. A014544, A129668 (these both involve cubes).
Main diagonal of A224697.
Sequence in context: A349420 A323067 A140108 * A338320 A056354 A072534
KEYWORD
nonn,hard,nice,more
AUTHOR
Erich Friedman, Dec 11 1999
EXTENSIONS
More terms from Sergio Pimentel, Jun 03 2008
Corrected and extended by Jon E. Schoenfield, Sep 19 2008
Edited by N. J. A. Sloane, Apr 12 2013, at the suggestion of Paolo P. Lava
a(11) corrected by Alois P. Heinz, Apr 15 2013
a(13) from Alois P. Heinz, Apr 19 2013
a(14) from Christopher Hunt Gribble, Oct 26 2013
a(15) and a(16) from Fidel I. Schaposnik, May 04 2015
a(17)-a(23) from Holger Langenau, Sep 20 2017
a(24) from Michael De Vlieger, May 04 2018, from paper written by Holger Langenau
a(25) and a(26) from Holger Langenau, May 14 2018
a(27) from Holger Langenau, Apr 15 2019
a(28) from Holger Langenau, Jun 17 2020
a(28) corrected by Holger Langenau, Jul 31 2020
STATUS
approved