The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A116914 Number of UUDD's, where U=(1,1) and D=(1,-1), in all hill-free Dyck paths of semilength n (a hill in a Dyck path is a peak at level 1). 3
 1, 1, 5, 16, 58, 211, 781, 2920, 11006, 41746, 159154, 609324, 2341060, 9021559, 34855741, 134972368, 523689718, 2035462990, 7923732118, 30889008112, 120566373676, 471134916286, 1842964183570, 7216096752496, 28279240308268, 110913181145716, 435333520075796, 1709861650762900 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS Catalan transform of A034299. - R. J. Mathar, Jun 29 2009 LINKS G. C. Greubel, Table of n, a(n) for n = 2..1000 David Anderson, E. S. Egge, M. Riehl, L. Ryan, R. Steinke, Y. Vaughan, Pattern Avoiding Linear Extensions of Rectangular Posets, arXiv:1605.06825 [math.CO], 2016. Colin Defant, Proofs of Conjectures about Pattern-Avoiding Linear Extensions, arXiv:1905.02309 [math.CO], 2019. E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265. FORMULA a(n) = Sum_{k=0..floor(n/2)} k*A105640(n,k). G.f.: x*(1 + 5*x - (1-x)*sqrt(1-4*x))/(2*(2+x)^2*sqrt(1-4*x)). a(n+2) = A126258(2*n,n). - Philippe Deléham, Mar 13 2007 a(n) ~ 2^(2*n-1)/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014 EXAMPLE a(4)=5 because in the 6 (=A000957(5)) hill-free Dyck paths of semilength 4, namely UU(UUDD)DD, UUUDUDDD, UUD(UUDD)D, UUDUDUDD, U(UUDD)UDD and (UUDD)(UUDD) (U=(1,1), D=(1,-1)) we have altogether 5 UUDD's (shown between parentheses). MAPLE G:=z*(1+5*z-(1-z)*sqrt(1-4*z))/2/(2+z)^2/sqrt(1-4*z): Gser:=series(G, z=0, 31): seq(coeff(Gser, z^n), n=2..28); MATHEMATICA Rest[Rest[CoefficientList[Series[x*(1+5*x-(1-x)*Sqrt[1-4*x])/2/(2+x)^2/Sqrt[1-4*x], {x, 0, 40}], x]]] (* Vaclav Kotesovec, Mar 20 2014 *) PROG (PARI) my(x='x+O('x^40)); Vec(x*(1+5*x-(1-x)*sqrt(1-4*x))/(2*(2+x)^2 *sqrt(1-4*x))) \\ G. C. Greubel, Feb 08 2017 (MAGMA) R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( x*(1 + 5*x-(1-x)*Sqrt(1-4*x))/(2*(2+x)^2*Sqrt(1-4*x)) )); // G. C. Greubel, May 08 2019 (Sage) a=(x*(1+5*x-(1-x)*sqrt(1-4*x))/(2*(2+x)^2*sqrt(1-4*x))).series(x, 40).coefficients(x, sparse=False); a[2:] # G. C. Greubel, May 08 2019 CROSSREFS Cf. A105640. Sequence in context: A226973 A006217 A281870 * A047103 A226897 A077235 Adjacent sequences:  A116911 A116912 A116913 * A116915 A116916 A116917 KEYWORD nonn AUTHOR Emeric Deutsch, May 08 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 16:20 EST 2020. Contains 338906 sequences. (Running on oeis4.)