This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077233 a(n) is smallest natural number satisfying Pell equation b^2- d(n)*a^2= +1 or = -1, with d(n)=A000037(n) (nonsquare). Corresponding smallest b(n)=A077232(n). 3
 1, 1, 1, 2, 3, 1, 1, 3, 2, 5, 4, 1, 1, 4, 39, 2, 12, 42, 5, 1, 1, 5, 24, 13, 2, 273, 3, 4, 6, 1, 1, 6, 4, 3, 5, 2, 531, 30, 24, 3588, 7, 1, 1, 7, 90, 25, 66, 12, 2, 20, 13, 69, 4, 3805, 8, 1, 1, 8, 5967, 4, 936, 30, 413, 2, 125, 5, 3, 6630, 40, 6, 9, 1, 1, 9, 6, 41, 1122, 3, 21, 53, 2, 165, 120, 1260, 221064, 4, 5, 569, 10, 1, 1, 10, 22419 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS If d(n)=A000037(n) is from A003654 (that is if the regular continued fraction for sqrt(d(n)) has odd (primitive) period length) then the -1 option applies. For such d(n) the minimal b(n) and a(n) numbers for the +1 option are 2*b(n)^2 + 1 and 2*b(n)*a(n), respectively (see Perron I, pp. 94,p5). For general integer solutions see A077232 comments. If the trivial solution x=1, y=0 is included, the sequence becomes A006703. - T. D. Noe, May 17 2007 REFERENCES T. Nagell, "Introduction to Number Theory", Chelsea Pub., New York, 1964, table p. 301. O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 26, p. 91 with explanation on pp. 94,95). LINKS Ray Chandler, Table of n, a(n) for n = 1..10000 FORMULA a(n)=sqrt((A077232(n)^2 - (-1)^(c(n)))/A000037(n)) with c(n)=1 if A000037(n)=A003654(k) for some k>=1 else c(n)=0. EXAMPLE d=10=A000037(7)=A003654(3), therefore a(7)=1 and b(7)=A077232(7)=3 give 3^2=10*1^2 -1 and 2*b(7)^2+1=19 and 2*b(7)*a(7)=2*3*1=6 satisfy 19^2 - 10*6^2 = +1. d=11=A000037(8) is not in A003654, therefore there is no (nontrivial) solution of the b^2 - d*a^2 = -1 Pell equation and a(8)=3 and b(8)=A077232(8)=10 satisfy 10^2 - 11*3^2 = +1. See A077232 for further examples. MATHEMATICA d[n_] := d[n] = n + Floor[Sqrt[n] + 1/2]; r[n_, a_] := Reduce[lhs = b^2 - d[n]*a^2; b > 0 && (lhs == 1 || lhs == -1) , {b}, Integers]; r[n_] := For[a = 1, True, a++, If[r[n, a] =!= False, Return[a]]]; A077233 = Table[a = r[n]; Print["a(", n, ") = ", a]; a, {n, 1, 93}] (* Jean-François Alcover, May 22 2012 *) CROSSREFS Cf. A000037, A003654, A003814, A033317, A077232. Sequence in context: A296659 A270823 A067627 * A282290 A178795 A123185 Adjacent sequences:  A077230 A077231 A077232 * A077234 A077235 A077236 KEYWORD nonn,nice AUTHOR Wolfdieter Lang, Nov 08 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 03:13 EST 2019. Contains 319260 sequences. (Running on oeis4.)