login
A077231
Denominators of coefficients of series expansion of a certain integral in the theory of charged particle beams.
2
1, 6, 240, 448, 138240, 225280, 402554880, 1857945600, 1010722406400, 301234913280, 5859811786752, 55010477998080, 9141306387333120000, 7898088718655815680, 1017975879293416243200, 161212016644168089600
OFFSET
0,2
COMMENTS
The integral is Integrate[1/Sqrt[Log[y]],{y,1,x}]=Sqrt[Pi]*Erfi[Sqrt[Log[x]] with series expansion Sqrt[x-1]*Sum[c(i)*(x-1)^(i-1),{i,0,19}]. Numerator(c(n))= A077230(n), denominator(c(n))=A077231(n).
REFERENCES
M. Reiser, Theory and design of charged particle beams. J. Wiley, N.Y. 1994, S. Humphries, Charged particle beams. J. Wiley, N.Y. 1990.
EXAMPLE
Series expansion is Sqrt[x-1]*(2 + 1/6 (x-1) -7/240 (x-1)^2+ 5/448 (x-1)^3 -...), hence a(0)=1, a(1)=6, a(2)=240, a(3)=448, etc.
CROSSREFS
Cf. A077230.
Sequence in context: A145180 A256275 A235346 * A172965 A002022 A378778
KEYWORD
frac,nonn
AUTHOR
Zak Seidov, Oct 31 2002
STATUS
approved