login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077229
Number of compositions of n where the largest part is less than or equal to the number of parts.
9
1, 1, 1, 3, 5, 11, 23, 48, 98, 204, 421, 863, 1766, 3606, 7341, 14913, 30233, 61175, 123589, 249344, 502443, 1011366, 2033894, 4086975, 8206833, 16469875, 33035611, 66234372, 132745859, 265961487, 532717894, 1066778687, 2135822457, 4275459730, 8557335141, 17125445575, 34268965676, 68568213419, 137187103849, 274458924246
OFFSET
0,4
FORMULA
G.f.: 1 + sum(k>=0, ((x^(k+1)-x)/(x-1))^k ). - Vladeta Jovovic, Sep 24 2004
G.f.: 1 + sum(n>=1, q^n * ( (1-q^n)/(1-q) )^n ), the g.f. above, slightly rewritten. [Joerg Arndt, Mar 30 2014]
a(n) ~ 2^(n-1). - Vaclav Kotesovec, May 01 2014
a(n) = A098124(n)+A098125(n). - R. J. Mathar, Oct 01 2021
EXAMPLE
a(5)=11 since 5 can be written as 1+1+1+1+1, 1+1+1+2, 1+1+2+1, 1+1+3, 1+2+1+1, 1+2+2, 1+3+1, 2+1+1+1, 2+1+2, 2+2+1, or 3+1+1; but not as 2+3 since then the largest part (3) would be greater than the number of parts (2).
MATHEMATICA
Table[SeriesCoefficient[1 + Sum[x^k*((1-x^k)/(1-x))^k, {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 01 2014 *)
CROSSREFS
Row sums of A077227.
Sequence in context: A030494 A246491 A084361 * A335098 A018113 A113281
KEYWORD
nonn
AUTHOR
Henry Bottomley, Oct 29 2002
EXTENSIONS
More terms from Vladeta Jovovic, Sep 24 2004
Prepended a(0) = 1, Joerg Arndt, Mar 30 2014
STATUS
approved